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PREFACE

This book contains some papers related to the talks presented at
the first Conference on Nonlinearity, held at the Mathematical Insti-
tute of the Serbian Academy of Sciences and Arts, on October 11–12,
2019, Belgrade, Serbia. This conference is organized by the Serbian
Academy of Nonlinear Sciences (SANS) in cooperation with the Math-
ematical Institute SASA and the Southeastern European Network in
Mathematical and Theoretical Physics (SEENET-MTP).

Nonlinear phenomena are present everywhere in nature – from in-
teractions between elementary particles to the dynamics of the uni-
verse as a whole. Nonlinear methods are used in research of all sciences
– from fundamental to applied. Contemporary comfortable human life
largely depends on technological achievements based on nonlinear pro-
cesses.

Serbian Academy of Nonlinear Sciences is a scientific society whose
members are scientists that significantly contributed to developments
of nonlinear sciences in Serbia. The main goal of SANS is a strong
fruitful suport to versatile developments of nonlinear sciences, partic-
ularly in Serbia. SANS has its origin in South-Slavenian Academy of
Nonlinear Sciences founded on May 20, 1998 in Belgrade, as a branch
of the Academy of Nonlinear Sciences in Moscow. Presently SANS
has 30 members: 16 full (academicians), 7 corresponding, 2 honorary,
and 5 foreign members. Organization of scientific meetings – colloqui-
ums and conferences on nonlinearity – are among principal activities
of SANS.

This Conference on Nonlinearity was organized on the occasion
of the 110th anniversary since the birth of Nikolay Nikolaevich Bo-
golyubov, an outstanding world known Soviet and Russian scientist,
who made significant contributions in many parts of theoretical and
mathematical physics. This volume of proceedings contains a review
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article on the life and scientific activities of N. N. Bogolyubov, writ-
ten by A. G. Zagorodny – academician of the National Academy of
Sciences of Ukraine and director of the Bogolyubov Institute for Theo-
retical Physics of the National Academy of Sciences of Ukraine, Kiev.
It is worth noting that Nikolay N. Bogolyubov published his first sci-
entific paper at the age of 15, and obtained a Candidate of Sciences
degree and Doctor of Sciences degree at the ages of 19 and 21, respec-
tively. Among other activities, N. N. Bogolyubov was the director
of the Joint Institute for Nuclear Research (JINR), Dubna, Russia,
fo many years. One of us (B. Dragovich) spent one year (1976) and
after that he visited JINR many times. N. N. Bogolyubov visited the
Institute of Physics, Belgrade, 1978 and signed a document on scien-
tific collaboration between JINR and the Institute of Physics. At that
time, B. Dragovich had the opportunity to spend a week with N. N.
Bogolyubov and enjoy his very pleasant communication and scientific
influence.

On behalf of all involved in the organization of this conference,
we would like to express our gratitude to the Ministry of Education,
Science and Technological Development of the Republic of Serbia for
a very useful financial support, including the publication of these Pro-
ceedings. We are also thankful to all the speakers at the conference
and the authors of contributions to the Proceedings. We hope that
this collection of papers will be useful not only to participants of this
conference but also to all others who are interested in nonlinearity.

SANS plans to continue with the organization of Conference on
Nonlinearity in the future – one international conference with a period
of two years. We will be happy to see all participants of the first
conference again and welcome new ones.

Belgrade, June 2020
E d i t o r s

Branko Dragovich
(President of SANS)

Zeljko Cupic
(Scientific secretary of SANS)
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Founder of modern theoretical
and mathematical physics

A. G. Zagorodny∗

Bogolyubov Institute for Theoretical Physics,
Nat. Acad. of Sci. of Ukraine, Kyiv, Ukraine

Abstract

The main periods of life and scientific activity of Academician Bogolyubov are
presented. His role in the progress of theoretical and mathematical physics, the for-
mation of scientific schools and the foundation of new departments, scientific labo-
ratories and institutes are discussed.

“Science is the main and only goal in my life.”

Mykola Bogolyubov

The Conference on Nonlinearity orga-
nized on the occasion of the 110-th an-
niversary of Mykola Bogolyubov pro-
vided a good opportunity to recollect
the scientific achievements of this bril-
liant scientist and to discuss once again
his invaluable contribution to the devel-
opment of various fields of theoretical
and mathematical physics – nonlinear
mechanics, nuclear physics, quantum
field theory, high energy physics, con-
densed matter physics, etc. The depart-
ments, research groups, and even whole
institutes founded by him continue to
work nowadays. The Bogolyubov sci-
entific school, which has grown on his
ideas, is successfully developing already
in its fourth generation.

Mykola Bogolyubov was born on August 21, 1909 in Nizhny Novgorod.
That very year the Bogolyubov family moved from Nizhny Novgorod to
Nizhyn, Chernihiv province, where Mykola’s father – by that time already

∗ e-mail address: azagorodny@bitp.kiev.ua
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2 A.G. Zagorodny

known theologist Mykola Mykhailovych Bogolyubov – got the position of
professor of scripture at the Prince Bezborodko Historical and Philolog-
ical Institute. It should be noted that this institute had a long educa-
tional traditions and a high reputation. Mykola Hohol, Yevhen Hrebinka,
Leonid Hlibov, and many other outstanding figures had been its students.
Four years later, Mykola Mykhailovych became a professor of theology at
St. Vladimir’ University and the family moved to Kiev.

In 1917, when Bogolyubov was eight, he entered the preparatory class
of the First Alexander Classic Kiev Gymnasium, but he studied there for
less than two years. In 1920, Soviet power was finally established in Kiev,
the Department of Theology was closed, and Mykola’s father was forced to
take a parish in the village of Velyka Krucha, Poltava province. Mykola
began to attend the Velykokruchans’ka seven-year school and graduated in
1922. When recollecting this school, Bogolyubov said that it’s pedagogical
team would be honor to the best schools of the capital. By the way, the
certificate on the graduation of the seven-year school was the only document
on education that Bogolyubov received in his life, and the words about his
officially received education are “I became a scientist in Velika Krycha”.
Due to school and home education, at the age of 13 Mykola Bogolyubov had
knowledge at the graduate level of the faculty of physics and mathematics
of the university.

In 1922, the Bogolyubov family returned to Kiev. Bogolyubov’s father
asked the famous mathematician academician Dmytro Grave for advise
concerning the further education of his elder son. Professor Grave, af-
ter acquaintance with young Bogolyubov, told his father that attending
lectures at any university would make no sense for the young man, but
advised to continue education individually. Since then Bogolyubov began
to participate in the seminars of Academician Grave. In the spring of 1923
young Bogolyubov met his teacher, mentor, and future colleague Academi-
cian Mykola Krylov, who began to give special classes in mathematics and
mechanics for Bogolyubov. When Mykola Bogolyubov was 15 years old, he
published his first scientific paper, and on June 1, 1925, a special decree
was adopted by the Ukrhlavnauka, which stated: “In view of phenomenal
gift for mathematics, to consider M. Bogolyubov as a postgraduate student
of the Department of Mathematics since July 18, 1925. Add him to the
payroll list”.

In 1930, Bogolyubov received his first recognition – he got the Award
of the Academy of Sciences of Bologna (Italy). The same year, namely,
on April 6, 1930, at the General Meeting of the Department of Physics
and Mathematics of the All-Ukrainian Academy of Sciences (VUAN), on
the recommendation of D. Grave and M. Krylov, the degree of Doctor
of Sciences was awarded to Bogolyubov without thesis. Academic title
of Professor on the Department of Theory of Functions was conferred on
Bogolyubov in 1936 after he had began teaching at Kiev University. Later,
in 1939, M. Bogolyubov was elected a corresponding member, in 1948 –
academician of the Academy of Sciences of the Ukrainian SSR. In 1947 he
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Figure 1: M.M. Bogolyubov and Academician M.M. Krylov

became a corresponding member of the Academy of Sciences of the USSR,
and in 1953 he became its full member.

The topmost results of Bogolyubov in 1932–37 include the foundation,
together with his teacher, of a new section of mathematical physics – the
theory of nonlinear oscillations, that later would be called nonlinear me-
chanics. In particular, they have developed new methods for integrating
nonlinear differential equations describing vibration processes. These re-
sults have been summarized in many joint monographs by Bogolyubov and
Krylov of this period. Among them are “On some formal decompositions
of nonlinear mechanics”, “New methods of nonlinear mechanics”, “Appli-
cation of methods of nonlinear mechanics to the theory of stationary os-
cillations”, “Introduction to nonlinear mechanics”. In 1955 a fundamental
monograph by Bogolyubov and Mitropolsky “Asymptotic Methods in the
Theory of Nonlinear Oscillations” was published.

In 1935–1936, Bogolyubov represents the Department of Mathematical
Physics of VUAN abroad. He gives lectures on the theory of nonlinear
oscillations at Henri Poincaré Institute in France, Belgian Mathematical
Society, and Belgian Research Institute. In 1940, after the unification of the
Northern Bukovyna with Ukraine Bogolyubov participated in the formation
of the mathematical department at the Physics and Mathematics Faculty
of Chernivtsi University.

In summer of 1941, M. Bogolyubov was evacuated to Ufa and then sent
to Moscow. At this time, as Mykola Mykolayovych writes in his autobi-
ography, he, while continuing theoretical studies in nonlinear mechanics,
was mainly concerned with defense topics. Bogolyubov returned to Kiev in
early 1944.

One of the most fruitful periods of creativity of Bogolyubov is associ-
ated with Kiev. Just here M. Bogolyubov initiated new fields of theoret-
ical and mathematical physics, in particular, wrote his classical works on
modern statistical theory.Particularly, in 1946 M. Bogolyubov published
the world-famous book “Problems of the Dynamic Theory in Statistical
Physics”. The results given in this work have initiated a new stage in the
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Figure 2: Opening of a new building of the Institute for Theoretical Physics

progress of statistical mechanics after the achievements related to Maxwell,
Boltzmann, Gibbs. Bogolyubov proposed a dynamic approach to the for-
mulation of the kinetic theory based on the chain of equations for equilib-
rium and nonequilibrium many-particle distribution functions – the chain
of Bogolyubov-Borne-Green-Kirkwood-Yvon equations (here it should be
noted that Bogolyubov gave the most general and mathematically rigorous
chain derivation). Using a small-scale expansion of this chain and applying
the assumption of the existence of a hierarchy of time scales (known in
the world literature as the hierarchy of Bogolyubov’s characteristic times),
Bogolyubov obtained closed kinetic equations for one-particle distribution
functions not only for neutral gas but also for plasma. The latter equation
today is called the Bogolyubov-Balescu-Lennard kinetic equation. Instead
of Boltzmann’s hypothesis of molecular chaos, he proposed the principle of
complete weakening of initial correlations (Bogolyubov’s principle), which
made it possible to calculate collision integrals on the basis of a reduced
chain of equations for distribution functions. To describe the next stage in
the evolution of the system, Bogolyubov obtained the equation of hydro-
dynamics.

1947 – another brilliant result: the microscopic theory of superfluid-
ity. The article in which this theory was formulated has for many years
remained one of the most cited works of our time. In this work Bogolyubov
for the first time applied a new mathematical technique known today as Bo-
golyubov’s canonical transformation. On the example of a weakly idealized
Bose gas, Bogolyubov explained from the first principles the formation of
the excitation spectrum of a superfluid helium and thus the nature of this
macroscopic quantum phenomenon. He later summarized his mathematical



Founder of modern theoretical and mathematical physics 5

Figure 3: Academicians O.S. Davydov, O.G. Sitenko, and M.M. Bogolyu-
bov after the opening of a new building of the Institute (1970)

formalism for the foundation of a microscopic theory of superconductivity.
Bogolyubov perfectly studied the methods of secondary quantization for
quantum statistical systems. His “Lectures on Quantum Statistics”, pub-
lished in 1949, could be a good illustration of effective application of this
method to quantum statistics. This contributed to his interest in the prob-
lems of quantum field theory, where he also managed to obtain a number
of outstanding results. A brilliant example is the development of a method
for eliminating divergencies in the quantum field theory based on the use of
the subtraction procedure, and proving one of the central theorems of the
renormalization theory, known as the Bogolyubov-Parasyuk theorem. The
discovery of the general form of the subtraction procedure and its justifica-
tion were of great importance for the further development of high-energy
physics. It made it possible, in particular, to prove the renormalizability of
a unified theory of electroweak interactions, as well as of supersymmetric
theories, to obtain operator expansions at short distances, to study phase
transitions, and so on.

In 1951–1953, Mykola Bogolyubov worked at the top-secret object of the
Soviet Union – “Arzamas-16” (Sarov), as well as at the Institute of Atomic
Energy (now “Kurchatov Institute” in Moscow), where in parallel with the
mathematical studies of the problems related to the creation of hydrogen
weapons he worked on the problems concerning the magnetic fusion reactor.
It should be noted that the results obtained then by Bogolyubov in the field
of nuclear fusion have not been published since they were a part of secret
reports. Only after removing the mark of secrecy from these results it
turned out to be that considerable part of the results on the kinetic plasma
theory had been obtained by Bogolyubov before they were obtained and
published independently by other authors in open literature.

From 1948 M. Bogolyubov along with his work in Kiev began to head
the Department of Mathematical Physics at the Institute of Chemical
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Figure 4: M.M. Bogolyubov and his disciples, Academicians O.S. Parasyuk
(left) and Yu.O. Mytropol’s’kyi (right)

Physics in Moscow, and from 1949 – also the Department of Theoretical
Physics of the Steklov Mathematical Institute of the Academy of Sciences
of the USSR. In 1956 Mykola Bogolyubov became the Director of the Lab-
oratory of Theoretical Physics of the Joint Institute for Nuclear Research
(JINR) in Dubna. In January 1965, at the session of the plenipotentiaries of
the governments of the member states of the Institute, Mykola Bogolyubov
was elected the Director of JINR, which he has headed for over 20 years.
Since 1957 Mykola Bogolyubov also headed the Laboratory of the Theory
of Atomic Nuclei and Elementary Particles at the Institute of Physics of
the Academy of Sciences of the Ukrainian SSR.

Among other results by Bogolyubov concerning the perturbation meth-
ods in the quantum field theory, one should also mention the method of
renormalization group – the new general approach in theoretical physics,
which has found application in various fields.

Mykola Bogolyubov is a founder of a new field of research in the quan-
tum theory that was later called the axiomatic field theory. In particular,
the proposed derivation of the dispersion relations has led to the develop-
ment of a new mathematical approach to the analytical continuation of the
generalized functions of many variables. For these studies in 1966 Mykola
Bogolyubov was awarded the Danny Heineman Award. In his welcome ad-
dress, Professor R. Jost said: “You made an unforgettable impression on
me. Most theorists at the time were disrespectful of mathematics, and log-
ical deduction was ‘trampled’. Only the romantic influence of genius could
have value. And then you appeared, a person who knows both mathematics
and physics and who is ready to solve complex problems that require their
logical combination. It seems to me that this is a reflection of the national
character of your great people”.

In 1961 M. Bogolyubov introduced the fundamental concept of quasi-
averages and thus, in fact, a new theory of phase transformations was
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Figure 5: M. Gell-Mann (left) and M.M. Bogolyubov at the conference in
Chicago (1967)

created. The spread of these ideas to the physics of elementary particles
was called spontaneous symmetry breaking – another fundamental result
of Mykola Bogolyubov, which is important for quantum physics.

During the period of 1964–1966 Bogolyubov published important papers
on the symmetry theory and quark models of elementary particles. One of
the important results in this field is the introduction of the new quantum
number for quarks, now known as color, proposed by him and his disciples.

Bogolyubov’s scientific activity revealed the unity of the mathematical
structure of theories for different branches of physics. The follower of Bo-
golyubov academician V. Vladimirov noted: “Combination of mathematics
and physics in the works of M.M. Bogolyubov made it possible for him
to contribute considerably to the development of theoretical physics and
in fact to create the foundations of modern mathematical physics, which
continues the traditions of Hilbert, Poincare, Einstein, Dirac”.

Mykola Bogolyubov had the talent of a great researcher and outstand-
ing organizer of science. An example confirming his organizational skills is
the foundation in 1966 of the Institute for Theoretical Physics that since
1993 is called by his name. It should be noted that the creation of an elite
physical institute in Kiev was an extremely difficult task. There were sev-
eral reasons. These include the existence in the USSR of the Institute for
Theoretical Physics of the USSR Academy of Sciences in Chornogolovka
(now the Landau Institute for Theoretical Physics of RAS), and the in-
consistency to the ’general line’, according to which the priority in the
development of fundamental research belonged obviously not to Ukraine,
and also problems with the formation of highly skilled staff capable to per-
form competitive research. And it was necessary to have the influence and
weight of Mykola Bogolyubov to succeed. It was also important that the
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Figure 6: Sitting: A.S. Davydov, G. Lipkin, M.M. Bogolyubov, R. Mar-
shak. Stand: A.N. Tavhelidze, Yu.A. Mitropolsky, O.S. Parasyuk, M.K. Po-
livanov, V.P. Shelest, A.I. Akhiezer (left to right)

First Secretary of the Communist Party of Ukraine Petro Shelest and Pres-
ident of the Academy of Sciences of Ukrainian SSR Borys Paton gave him
great help and assistance in this matter. As a result of their joint efforts,
on January 5, 1966, the Council of Ministers of the Ukrainian SSR adopted
a decree “On the Establishment of the Institute for Theoretical Physics of
the Academy of Sciences of the Ukrainian SSR”, and in 1970, during the
Rochester Conference, a new building of the institute was opened on the
site chosen by Bogolyubov.

Everything related to the foundation of the Institute has been done
with the direct participation of Bogolyubov – from the choice of the site for
the institute building to staff appointments. He formulated the main fields
of scientific activity of the Institute, namely: elementary particle theory,
theory of nucleus and nuclear reactions, and statistical physics. Mykola
Bogolyubov invited to the institute outstanding scientists, including his
talented students. Among the scientists with world names whom he in-
vited were academicians A. Davydov, A. Petrov, A. Sitenko, I. Yukhnovsky;
students of Bogolyubov: A. Tavhelidze (later academician of the Russian
Academy of Sciences), academicians of the NAS of Ukraine O. Parasyuk,
D. Petryna, corresponding member of the Academy of Sciences of Ukraine
V. Shelest and others. As a result, for the first seven years of the director-
ship of Mykola Bogolyubov the Institute has become a powerful center of
theoretical physics, well known not only in Ukraine but also far beyond its
borders.

Bogolyubov paid much attention to the development of international co-
operation, in particular the organization of international conferences such
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Figure 7: E.C.G. Sudarshan (USA), R.E. Marshak (USA), M.M. Bo-
golyubov, and V.P. Shelest at the Institute for Theoretical Physics during
the XV International Conference on High Energy Physics (Kyiv, 1970)

as Rochester Conference on high-energy physics and international confer-
ences on plasma theory initiated by him together with A. Sitenko. These
conferences proved to be so successful that they were called the “Kiev
Conferences on Plasma Theory” and were held under this name in many
countries around the world, periodically returning to Kiev in 1976, 1987,
and 2006.

As already mentioned, the scientific fields formulated by Mykola Bo-
golyubov have determined the activities of the Institute for many years.
Today its main activities are related to high-energy physics and astro-
physics, nucleus theory, quantum field theory and symmetry theory, the
theory of nonlinear phenomena in condensed matter and plasmas, as well
as the kinetic theory of highly nonequilibrium processes. In fact, this cor-
responds to somewhat extended trends formulated by Bogolyubov. We
can say that much of the research activities of the Institute are related to
the application and development of the ideas of Mykola Bogolyubov. In
particular, in the field of theoretical high-energy physics, this concerns the
dynamic generation of masses, spontaneous symmetry breaking, quantum
chromodynamics, and the application of symmetry theory in quantum field
theory. The same concerns Bogolyubov’s ideas in the kinetic theory. As
noted above, Mykola Bogolyubov is one of founders of the theory of many-
particle systems. Previously, such theory was used to describe gases and
plasma.

But Bogolyubov’s methods have also proved to be effective for describ-
ing much more complex systems, in particular for the study of dusty plas-
mas i.e. a mixture of plasmas and solid particles. Creative inheritance of
Bogolyubov is also used today to solve the problems of condensed matter
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Figure 8: First International Conference on Plasma Theory (Kyiv, Institute
for Theoretical Physics of the Academy of Sciences of the UkrSSR, 1971)

physics. These include the description of high-temperature superconduc-
tivity, the phenomenon of Bose condensation in various systems, nonlinear
phenomena in solids and liquids, transport processes in molecular systems,
and the kinetics of electron transport in nanoobjects. Methods of quantum
field theory are, in turn, widely used in the study of low-dimensional and
so-called Dirac structures as well as new materials.

Along with scientific researche and organizational activities, Bogolyubov
carried out impressive pedagogical work. In 1936–1941 and 1944–1949 he
taught at Kyiv State University, in 1945–1948 he was Dean of the Fac-
ulty of Mechanics and Mathematics, where he founded and headed the
Department of Mathematical Physics. From November 1943 he was Pro-
fessor at the Lomonosov Moscow University. In January 1953, Bogolyubov
was elected as the Head of the Department of Theoretical Physics of that
University, where in 1966 he also founded the well-known Bogolyubov De-
partment of Quantum Statistics and Field Theory.

It is important to note that Mykola Bogolyubov’s life and work from
the first years the last days were closely connected with Ukraine. Being
ethnic Russian in origin, he was brought up in the atmosphere of deep
love to Ukraine, he felt great respect for the land where his childhood and
adolescence passed, where he made his first steps in science and gained
worldwide name. Desiring to share the fate of the Ukrainian people in ev-
erything, he considered himself Ukrainian, as he wrote about himself in all
questionnaires and personal papers. The same entry was in his Soviet pass-
port. Mykola Mykolayovych’s attitude to Ukraine is comprehensively char-
acterized by Alexey Bogolyubov’s words about his elder brother: “Mykola
Mykolayovych had two homelands – Russia and Ukraine and two native
languages – Russian and Ukrainian. Beginning from the Velyka Crucha
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years, he became associated with Ukraine, and Shevchenko’s poetry was,
in fact, the first poetry he became interested in. The young graduate stu-
dent of the Department of Mathematical Physics wrote the minutes of the
seminars of the department in Ukrainian, and his first works were also
written in Ukrainian.” And further: “Mykola Mykolayovych, in the dif-
ficult times for Ukraine, when the Ukrainian intelligentsia started to be
destroyed, when the shameful process of the Ukrainian Liberation Union
took place in Kharkiv and Ukrainian books burned, he admitted himself
to be a Ukrainian and so considered himself for his whole life. It is an
indisputable fact that all the development of his personality and the ac-
quisition of features of scientific creativity took place in Ukraine, and were
also closely associated with Ukraine. He used to call Kyiv his favorite city,
equating to him only Paris”. Although these words are well known and
have been cited for many times in articles about the Ukrainian period of
Bogolyubov and memories of him, we have to mention them here, because
they reveal the origins of Bogolyubov’s love for Ukraine. Mykola Mykolay-
ovych’s attitude to his native Ukrainian land, to the Ukrainian language,
should be a good example for many of our compatriots.

Mykola Bogolyubov passed away on February 13, 1992. He has left
invaluable scientific heritage, numerous scientific schools, a large cohort of
students and followers, with whom he always shared scientific ideas and
interesting research.

M.M. Bogolyubov was a scholar of wide international recognition. He
was elected a member of 10 foreign academies of sciences and was awarded
the honorary doctorate of 10 foreign universities. Foreign state and scien-
tific awards also testify to the recognition of Bogolyubov’s contribution to
the world science. In particular, he is a winner of the Prize of the Academy
of Sciences of Bologna (1930, Italy), Heinemann Prize of the American
Physical Society (1966), Helmholtz Gold Metal (1969), Max Planck medal
of the Physical Society of Germany (1973), Franklin Prize (1974, USA),
Prize of the Slovak Academy of Sciences (1975), Paul Dirac Prize (1992)
and others.

In 1987, the International Center for Theoretical Physics in Trieste
founded the Bogolyubov Prize for outstanding achievements in mathemat-
ics and solid state physics for scientists from developing countries. The Na-
tional Academy of Sciences of Ukraine has also established the Bogolyubov
Prize for the research in mathematics and physics. The Russian Academy
of Sciences founded in 1999 the Bogolyubov Gold Medal, for research in
the field of mathematical physics and mathematics. The Bogolyubov Gold
Medal was also founded in JINR. At 2018 the Bogolyubov Institute for
Theoretical Physics started awarding Bogolyubov Prizes for the best works
in theoretical and mathematical physics.

The monuments of Academician Bogolyubov were erected in Nizhny
Novgorod and Dubna, and his busts were located in Kiev at the Bogolyubov
Institute for Theoretical Physics and at the JINR Laboratory of Theoretical
Physics. A memorial plaque honoring Mykola Bogolyubov decorates the
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Figure 9: Certificate on naming of a minor planet in the solar system as
Bogolyubov

Figure 10: M.M. Bogolyubov (left) and W. Heisenberg (right) after receiv-
ing Max Plank medal by Bogolyubov (1973)

Red Building of Taras Shevchenko National University of Kyiv. A memorial
sign in honor of Mykola Mykolayovych was erected in the village of Veleka
Krucha.

The 100th anniversary of Bogolyubov birth is widely celebrated in
Ukraine. The International Bogolyubov Conference “Modern Problems of
Theoretical and Mathematical Physics” and the II Ukrainian Mathematical
Congress were held in Kyiv, and the anniversary Bogolyubov Conference
was also held in Lviv; books and articles about the life and work of the
great scientist were published. The anniversary coin and the Bogolyubov
Medal of the Ukrainian Mathematical Congress were minted.
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On December 3, 2009, at the application of the famous Ukrainian as-
tronomer K.I. Churyumov initiated by the Bogolyubov Institute for Theo-
retical Physics, the International Astronomical Union adopted the decision
to give the minor planet of the Solar System (22616) = 1998 KG7 the name
Bogolyubov.

A brilliant scientist continues his life in the works of his students and nu-
merous followers, including those who work at the Bogolyubov Institute for
Theoretical Physics, and we are sure that the ideas of Mykola Bogolyubov
will inspire many theorists for many years.
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Abstract

This article is related to construction of zeta strings from p-adic ones. In
addition to investigation of p-adic string for a particular prime number p, it is also
interesting to study collective effects taking into account all primes p. An idea
behind this approach is that a zeta string is a whole thing with infinitely many faces
which we see as p-adic strings. The name zeta string has origin in the Riemann zeta
function contained in related Lagrangian. The starting point in construction a zeta
string is Lagrangian for a p-adic open string. There are two types of approaches
to get a Lagrangian for zeta string from Lagrangian for p-adic strings: additive
and multiplicative approaches, that are related to two forms of the definition of
the Riemann zeta function. As a result of differences in approaches, one obtains
several different Lagrangians for zeta strings. We briefly discuss some properties
of these Lagrangians, related potentials, equations of motion, mass spectrum and
possible connection with ordinary strings. This is a review of published papers
with some new views.

1. Introduction

The subject of this paper belongs to String Theory (ST) [1], in particular
to p-adic and zeta strings. String theory emerged at the end of 1960th and
has been developed as the best candidate for unification of fundamental
interactions (gravitational, electromagnetic, strong and weak) and elemen-
tary matter constituents in the form of strings. Strings are one-dimensional
objects that exist at the very short distances (close to the natural Planck

length `P =
√

G~
c3
∼ 10−35m). Although strings are not yet experimentally

discovered, string theory has played very important role in an interplay
between general physical laws and modern mathematics [1].

∗ This article is based on a talk given at the first Conference on Nonlinearity, held
in Belgrade, 11-12 October 2019, and dedicated to the 110th anniversary of Nikolay
Nikolayevich Bogolyubov – an outstanding Soviet and Russian scientist.
† e-mail address: dragovich@ipb.ac.rs
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p-Adic strings [2, 3] are introduced in string theory in 1987 as a p-adic
analog of ordinary strings. In the case of open and closed strings, it was
shown that there is a connection between ordinary and p-adic strings in
the form of product of their scattering amplitudes which is a constant. By
construction of Lagrangian for p-adic strings it occurred that p-adic strings
are even simpler for mathematical investigation than ordinary strings. In-
teresting properties of p-adic strings motivated construction of some other
physical models using methods of p-adic analysis, and it has resulted in
emergence of p-Adic Mathematical Physics, e.g., see reviews [2, 3, 4] and
references therein.

Note that in the word “p-adic”, p is related to a prime number. Since
there are infinitely many prime numbers, it should be infinitely many p-
adic strings. Then question arises how to connect p-adic counterparts with
ordinary model over real (or complex numbers). Usual way to connect
ordinary model with p-adic analogs of the same physical system is by using
adelic approach, which is based on adelic analysis. To have insight into
adelic aspects of strings, one can consume [2, 3]. An adelic model of the
quantum harmonic oscillator is given in [5].

It seems unnatural that there exist infinitely many kinds of p-adic
strings – one string for each prime number p. It is more natural to think
that there exists one new entity (say zeta string) which has infinitely many
faces – one face for each p. Fortunately, in the case of p-adic open strings
there is possibility to work in this direction. Namely, there are Lagrangians
for p-adic open strings, which have the same form and the difference is prac-
tically in number p that serves as a parameter. As it will be shown in the
sequel of this paper, one can start with this Lagrangian of p-adic string,
extend p to n (natural numbers), and then by “integration” over n to get
a new Lagrangian without n. This new Lagrangian is related to a new
thing, which we call zeta string, since this Lagrangian contains the Rie-
mann zeta function. It occurs that obtaining of this new Largangian is not
unique and depends on applied procedure. This review article is devoted
to construction of Lagrangians for zeta strings.

The paper is designed as follows. Some basic concepts from p-adic
mathematics will be recalled in the next section. A brief review of p-adic
open string, emphasizing related Lagrangian, will be given in section 3.
Construction of Lagrangians for zeta strings, and some their elaboration,
is presented in section 4. Several concluding remarks are given in section
5.

This review is based on a series of papers [6]–[12], some of them pub-
lished in the journal Theoretical and Mathematical Physics, which was
founded in 1969 by N. N. Bogolyubov.

2. A Brief Review of p-Adic Mathematical Background

Recall that rational numbers play important role in physics and mathemat-
ics. In physics, numerical results of experiments are rational numbers. In
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mathematics, rational numbers make a simple infinite number field Q with
respect to summation and multiplication. On Q, in addition to the usual
absolute value, there is also well defined p-adic norm (or in other words –
p-adic absolute value). For a given prime number p, any nonzero rational
number can be presented as x = a

bp
µ, where a, b 6= 0 are integers not de-

visable by p, and µ ∈ Z. Then, according to definition, p-adic norm of x
is |x|p = p−µ and |0|p = 0. p-Adic distance between two rational numbers
x and y is defined as dp(x, y) = |x − y|p. p-Adic distance is well known
example of ultrametrics, because it satisfies strong triangle inequality, i.e.
dp(x, y) ≤ max{dp(x, z), dp(y, z)}.

Rational numbers, and their completion, with respect to the p-adic
norm are p-adic numbers. Any nonzero p-adic number x can be presented
in a unique way as

x = pν
+∞∑

n=0

xn p
n, x0 6= 0, ν ∈ Z, xn ∈ {0, 1, 2, . . . , p− 1}, (1)

where xn are digits. For a given p, all numbers (1) make field Qp of p-adic
numbers. There are infinitely many different Qp – one number field for
each prime number p.

There are mainly two kinds of analysis with p-adic arguments: 1) p-
adic valued functions and 2) complex (or real) valued functions. On Qp

two important continuous complex-valued functions are defined [3]:

• 1) multiplicative character πp(x) = |x|cp, where x ∈ Q∗p = Qp \ {0} and
c ∈ C;

• 2) additive character χp(x) = e2πi{x}p , where x ∈ Qp and {x}p is
fractional part of x.

Real and p-adic numbers have their origin in rational numbers. Q is
dense subset in R and all Qp. This fact enables a unification of real and
all p-adic numbers as a ring of adeles. An adele (α) is an infinite sequence
that takes into account real and all p-adic numbers:

α = (α∞, α2, α3, . . . , αp, . . .), (2)

where α∞ ∈ R and αp ∈ Qp, p = 2, 3, 5, 7, . . . with some restrictions.
The following product formulas connect real and p-adic properties of

the same rational number:

|x|
∏

p

|x|p = 1, if x ∈ Q \ {0}, (3)

e−2πix
∏

p

e2πi{x}p = 1, if x ∈ Q. (4)

As a comprehensive review on p-adic numbers, adeles and their analysis,
e.g., see [2, 3, 13].
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3. p-Adic Open Scalar Strings

Recall that ordinary string theory started by construction of the Veneziono
amplitude for scattering of two open bosonic strings A∞(a, b), which in the
crossing symmetric form is

A∞(a, b) = g2∞

∫

R
|x|a−1∞ |1− x|b−1∞ d∞x (5)

= g2∞
ζ(1− a)

ζ(a)

ζ(1− b)
ζ(b)

ζ(1− c)
ζ(c)

, (6)

where a, b, c are complex parameters related to momenta of strings and
satisfy equality a+ b+ c = 1, g∞ is a coupling constant, | · |∞ denotes usual
absolute value, x is real variable related to the string world-sheet, and ζ is
the Riemann zeta function.

Scattering amplitude between two p-adic strings was introduced as p-
adic analog of integral (5), i.e.

Ap(a, b) = g2p

∫

Qp

|x|a−1p |1− x|b−1p dpx (7)

= g2p
1− pa−1
1− p−a

1− pb−1
1− p−b

1− pc−1
1− p−c , (8)

where now x is world-sheet variable described by p-adic (instead of real)
numbers, while parameters a, b, c remain their properties as in the case of
ordinary strings. According to this definition of string amplitudes, it follows
that p-adic and ordinary strings differ in description of their world-sheet, i.e.
by p-adic and real numbers, respectively. Final expressions for amplitudes
of ordinary (6) and p-adic (8) strings differ, but they are connected by the
Freund-Witten product formula

A(a, b) = A∞(a, b)
∏

p

Ap(a, b) = g2∞
∏

p

g2p = const. (9)

In (9) is used the Euler product formula for the definition of the Riemann
zeta function

ζ(s) =
∏

p

1

1− p−s , s = σ + iτ, σ > 1. (10)

Importance of product (9) consists in possibility to express complex ordi-
nary string amplitude as product of all inverse p-adic amplitudes which are
simpler than the ordinary one, i.e. A∞(a, b) = const.

∏
pA
−1
p (a, b). It also

gives rise to think that not only ordinary strings may exist but also p-adic
ones, or a new string (zeta string) that encompasses all p-adic effects.
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One of the main achievements in p-adic string theory is finding of an
effective field description of p-adic strings without explicit use of p-adic
numbers. The corresponding Lagrangian is very simple and exact. It de-
scribes not only four-point scattering amplitude but also all higher ones at
the tree-level.

This Lagrangian for effective scalar field ϕ, which describes open p-adic
string (tachyon), is

Lp(ϕ) =
mD
p

g2p

p2

p− 1

[
− 1

2
ϕp
− 2

2m2
p ϕ+

1

p+ 1
ϕp+1

]
, (11)

where p is any prime number, 2 = −∂2t +∇2 is theD-dimensional d’Alembert
operator, mp is string mass and metric has signature (− + ...+). Kinetic
term in (11) contains nonlocal operator with infinite number of space-time
derivatives

p
− 2

2mp = exp
(
− ln p

2mp
2

)
=
∑

k≥0

(
− ln p

2mp

)k 1

k!
2k . (12)

Potential Vp(ϕ) is

Vp(ϕ) = −Lp(2 = 0) =
mD
p

g2p

p2

p− 1

[1

2
ϕ2 − 1

p+ 1
ϕp+1

]
(13)

and contains nonlinearity of the degree p+ 1.
The equation of motion for the scalar field ϕ in Lagrangian (11) is

p
− 2

2m2
p ϕ = ϕp, (14)

which has two trivial solutions ϕ = 0 and ϕ = 1. There are also inhomoge-
neous solutions resembling solitons, and for any spatial coordinate xi one
has

ϕ(xi) = p
1

2(p−1) exp
(
− p− 1

2m2
p p ln p

(xi)2
)
. (15)

It is worth mentioning that taking limit p = 1 + ε → 1 in Lagrangian
(11) one obtains

L1 =
mD

g2

[1

2
ϕ

2

m2
ϕ+

ϕ2

2
(logϕ2 − 1)

]
, (16)

and this new Lagrangian (16) is related to ordinary scalar string, see [14].
Starting from Lagrangian (11), many properties of p-adic string were

investigated, e.g. see some references in [6] for more information.
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4. Zeta Strings

Recall that starting from Lagrangian (11) and using methods of quantum
field theory was obtained p-adic string scattering amplitude

Ap(a, b) = g2p
1− pa−1
1− p−a

1− pb−1
1− p−b

1− pc−1
1− p−c , (a+ b+ c = 1) (17)

which is the same as that derived from integral expression (7) with p-adic
world sheet, see [2] for a review.

Since the scattering amplitude for the whole p-adic sector was obtained
in the form

A(a, b) =
∏

p

Ap(a, b) = g2
ζ(a)

ζ(1− a)

ζ(b)

ζ(1− b)
ζ(c)

ζ(1− c) , (18)

then the question arises about possibility to construct Lagrangian that
might produce amplitude (18). If such Lagrangian exists, then to obtain
it, we should start with Lagrangian for p-adic string (11) and then perform
suitable summation or multiplication over all primes p in such way to have
a new Lagrangian with the Riemann zeta function. Thus, there are two
approaches: additive and multiplicative.

4.1. Additive approach

To use additive approach, note that the Riemann zeta function can be
introduced in the following ways:

ζ(s) =
+∞∑

n=1

1

ns
, s = σ + iτ , σ > 1, (19)

1

ζ(s)
=

+∞∑

n=1

µ(n)

ns
, s = σ + iτ , σ > 1 , µ(n) = Möbius function (20)

(1− 21−s)ζ(s) =

+∞∑

n=1

(−1)n−1
1

ns
, s = σ + iτ , σ > 0. (21)

It is well known that the above defined Riemann zeta function has analytic
continuation to the whole complex s-plane except the point s = 1, where
it has a simple pole with residue 1.

Note also that there is a sense to replace prime number p by any natural
number n ≥ 2 in Lagrangian (11), i.e. one can introduce

Ln(ϕ) =
mD
n

g2n

n2

n− 1

[
− 1

2
ϕn
− 2

2m2
n ϕ+

1

n+ 1
ϕn+1

]
, (22)
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Now we want to introduce a new Lagrangian with a new field φ by the
following sum:

L(φ) =
+∞∑

n=1

Cn Ln

=
+∞∑

n=1

Cn
mD
n

g2n

n2

n− 1

[
− 1

2
ϕn
− 2

2m2
n ϕ+

1

n+ 1
ϕn+1

]
, (23)

whose concrete realization depends on the particular choice of the coeffi-
cients Cn, masses mn and coupling constants gn. To avoid a divergence
problem of 1/(n− 1) when n = 1, we take that Cn is proportional to n− 1.
We also assume that mn and gn do not depend on n, and denote mn = m
and gn = g. Taking Cn = n−1

n2 Dn we can rewrite (23) as

L(φ) =
mD

g2

+∞∑

n=1

Dn

[
− 1

2
φn−

2

2m2 φ+
1

n+ 1
φn+1

]
. (24)

One can easily see that term with n = 1 is equal to zero and does not
contribute to the sum in (24), but its presence is useful to perform procedure
required by definition of the Riemann zeta function.

In [6]–[12], we introduced new Lagrangians for the following values of
coefficient Dn: Dn = 1, Dn = n + 1, Dn = µ(n), Dn = −µ(n) (n +
1), Dn = (−1)n−1, Dn = (−1)n−1 (n+ 1).

4.1.1. Case Dn = 1, [6, 7].

In this case we have

L(φ) =
mD

g2

+∞∑

n=1

[
− 1

2
φn−

2

2m2 φ+
1

n+ 1
φn+1

]
. (25)

Performing summation with application of the Euler formula (19) and tak-
ing analytic continuation, we can rewrite (25) in the form

L(φ) = −m
D

g2

[1

2
φ ζ
( 2

2m2

)
φ+ φ+

1

2
log (1− φ)2

]
(26)

The potential V (φ) = −L(2 = 0) is

V (φ) =
mD

g2

[ζ(0)

2
φ2 + φ+

1

2
log (1− φ)2

]
, (27)

where ζ(0) = −1/2. Potential (27) has two local maximums, that are

unstable points: V (0) = 0 and V (3) ≈ 1.443m
D

g2
. It has the following

singularities: limφ→1 V (φ) = −∞ , limφ→±∞ V (φ) = −∞.
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The corresponding equation of motion is

ζ
( 2

2m2

)
φ =

φ

1− φ (28)

with two trivial solutions: φ = 0 and φ = 3. The solution φ = 3 follows
from the Taylor expansion of the Riemann zeta function operator

ζ
( 2

2m2

)
= ζ(0) +

∑

n≥1

ζ(n)(0)

n!

( 2

2m2

)n
. (29)

In the weak-field approximation |φ(x)| � 1, equation of motion (28)
becomes

ζ
( 2

2m2

)
φ = φ. (30)

ζ
(

2
2m2

)
can be regarded as a pseudodifferential operator

ζ
( 2

2m2

)
φ(x) =

1

(2π)D

∫

RD

eixk ζ
(
− k2

2m2

)
φ̃(k) dk (31)

with singularity at point k2 = −2m2. Now mass spectrum is M2 = µm2,

where M2 = −k2 = k20 −
−→
k 2, is determined by formula

ζ
( M2

2m2

)
= 1 (32)

and gives many tachyon masses (M2 < 0).
Note that one can replace above Dn = 1 by Dn = −1. Then Lagrangian

(26) and potential (27) will change their sign, while equation of motion (28)
and mass spectrum formula (32) will remain unchanged. This case may be
more interesting than the previous one and will be elaborated elsewhere.

In [7], a more general Lagrangian was considered, i.e.

Lh(φ) =
mD

g2

[
− 1

2
φζ
( 2

2m2
+ h
)
φ+AC

∞∑

n=1

n−h

n+ 1
φn+1

]
, (33)

where h is a real parameter (for h = 0 Lagrangian (33) reduces to (26)).
The related equation of motion is

ζ
( 2

2m2
+ h
)
φ = AC

∞∑

n=1

n−hφn. (34)

Solution of equation of motion (34) is investigated in [15], where LHS is
simplified by an entire function of exponential type.
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4.1.2. Case Dn = n+ 1, [8, 9].

In this case, Lagrangian (24) becomes

L(φ) =
mD

g2

[
− 1

2
φ

+∞∑

n=1

(
n−

2

2m2+1 + n−
2

2m2

)
φ+

+∞∑

n=1

φn+1
]

(35)

and according to (19) and analytic continuation we have

L(φ) =
mD

g2

[
− 1

2
φ
{
ζ
( 2

2m2
− 1
)

+ ζ
( 2

2m2

)}
φ +

φ2

1− φ
]
. (36)

Since ζ(−1) = −1/12 and ζ(0) = −1/2, the corresponding potential is

V (φ) = −L(2 = 0) =
mD

g2
7φ− 31

24 (1− φ)
φ2 , (37)

with properties: V (0) = V (31/7) = 0 , V (1 ± 0) = ±∞ , V (±∞) = −∞.
At φ = 0 potential has local maximum.

The equation of motion is

[
ζ
( 2

2m2
− 1
)

+ ζ
( 2

2m2

)]
φ =

φ((φ− 1)2 + 1)

(φ− 1)2
, (38)

which has only φ = 0 as a real constant solution.
The weak field approximation of (38) is

[
ζ
( 2

2m2
− 1
)

+ ζ
( 2

2m2

)
− 2
]
φ = 0, (39)

which implies condition on the mass spectrum

ζ
( M2

2m2
− 1
)

+ ζ
( M2

2m2

)
= 2 . (40)

From (40) follows that there are no finite solutions M2 > 2m2 and there
are many tachyon solutions M2 < 0.

4.1.3. Case Dn = µ(n), [10].

Related Lagrangian is

Lµ(φ) =
mD

g2

+∞∑

n=1

[
− 1

2
φµ(n) n−

2

2m2 φ+
µ(n)

n+ 1
φn+1

]
. (41)
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where µ(n) is the Möbius function:

µ(n) =





0, n = p2m
(−1)k, n = p1p2 · · · pk, pi 6= pj
1, n = 1, (k = 0)

(42)

Taking into account zeta function by expression (20) one can rewrite
Lagrangian (41) as

Lµ(φ) =
mD

g2

[
− 1

2
φ

1

ζ
(

2
2m2

) φ+AC
∫ φ

0
M(φ) dφ

]
, (43)

where AC denotes analytic continuation and M(φ) =
∑+∞

n=1 µ(n)φn = φ−
φ2 − φ3 − φ5 + φ6 − φ7 + φ10 − . . .

The corresponding potential, equation of motion and formula for mass
spectrum are, respectively:

Vµ(φ) = −m
D

g2

[
φ2 +AC

∫ φ

0
M(φ) dφ

]
, (44)

1

ζ
(

2
2m2

) φ =M(φ), ζ
(M2

2m2

)
= 1. (45)

In mass spectrum, there are only tachyons.

4.1.4. Case Dn = −µ(n) (n+ 1), [11].

Related Lagrangian is

L−µ(φ) =
mD

g2

+∞∑

n=1

φ
[µ(n)

2
n−

2

2m2+1 +
µ(n)

2
n−

2

2m2 − µ(n)φn−1
]
φ, (46)

where µ(n) is the Möbius function. Using procedure as in the previous
case, one can rewrite Lagrangian (46) in the form

L−µ(φ) =
mD

g2

{1

2
φ
[
1/ζ
( 2

2m2
− 1
)

+ 1/ζ
( 2

2m2

)]
φ− φ2AC F (φ)

}
(47)

where F (φ) =
∑+∞

n=1 µ(n) φn−1 = (1− φ− φ2− φ4 + φ5− . . .). Infinite sum∑+∞
n=1 µ(n) φn−1 is convergent when |φ| < 1.
Taking into account that ζ(−1) = −1/12 and ζ(0) = −1/2, the poten-

tial is

V−µ =
mD

g2
[
7 +AC F (φ)

]
φ2. (48)
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The related equation of motion and mass spectrum formula are:
[
ζ−1
( 2

2m2
− 1
)

+ ζ−1
( 2

2m2

)]
φ = 2φAC F (φ) + φ2AC F ′(φ), (49)

ζ−1
(M2

2m2
− 1
)

+ ζ−1
(M2

2m2

)
= 2. (50)

4.1.5. Case Dn = (−1)n−1.
A new example is based on (21)

+∞∑

n=1

(−1)n−1
1

ns
= (1− 21−s) ζ(s), s = σ + iτ , σ > 0 (51)

which has analytic continuation to the entire complex s plane with the
corresponding analytic expansion [16]

(1− 21−s) ζ(s) =

∞∑

n=0

1

2n+1

n∑

k=0

(−1)k
(
n

k

)
(k + 1)−s . (52)

At point s = 1, one obtains

lim
s→1

(1− 21−s) ζ(s) =
+∞∑

n=1

(−1)n−1
1

n
= log 2. (53)

Applying formula (51) to Lagrangian (24) and using analytic continua-
tion, we have

L =
mD

g2

[
− 1

2
φ
(

1− 21−
2

2m2

)
ζ
( 2

2m2

)
φ + φ− 1

2
log(1 + φ)2

]
. (54)

The potential is

V (φ) = −L(2 = 0) =
mD

g2

[1

4
φ2 − φ+

1

2
log(1 + φ)2

]
, (55)

which has one local maximum V (0) = 0 and one local minimum V (1) ≈
−0.057m

D

g2
. It is singular at φ = −1, i.e. V (−1) = −∞, and V (±∞) = +∞.

The equation of motion is
(

1− 21−
2

2m2

)
ζ
( 2

2m2

)
φ =

φ

1 + φ
, (56)

which has two constant solutions: φ = 0 and φ = 1. Formula for the mass
spectrum is

(
1− 21−

M2

2m2

)
ζ
(M2

2m2

)
= 1. (57)
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4.1.6. Case Dn = (−1)n−1(n+ 1), [12, 11].

Applying Dn = (−1)n−1(n + 1) and formula (21) to Lagrangian (24), and
using analytic continuation we obtain

L =− mD

g2

{ 1

2
φ
[ (

1− 22−
2

2m2

)
ζ
( 2

2m2
− 1
)

+
(

1− 21−
2

2m2

)
ζ
( 2

2m2

)]
φ − φ2

1 + φ

}
. (58)

The related potential, equation of motion and mass spectrum formula are,
respectively:

V (φ) =
mD

g2

(3

8
− 1

1 + φ

)
φ2 , (59)

[(
1− 22−

2

2m2

)
ζ
( 2

2 m2
− 1
)

+
(

1− 21−
2

2m2

)
ζ
( 2

2m2

)]
φ

=
2φ+ φ2

(1 + φ)2
, (60)

(
1− 22−

M2

2m2

)
ζ
( M2

2 m2
− 1
)

+
(

1− 21−
M2

2m2

)
ζ
( M2

2m2

)
= 2. (61)

4.2. Multiplicative approach

Let us note that Lagrangian for p-adic strings (11) can be rewritten as
follows (see [10]):

Lp(ϕ) =
mD
p

g2p

p2

p− 1

[
− 1

2
ϕp
− 2

2m2
p ϕ+

1

p+ 1
ϕp+1

]
(62)

=
mD

g2
p2

p2 − 1

{1

2
ϕ
[(

1− p−
2

2m2+1
)

+
(

1− p−
2

2m2

)]
ϕ

− ϕ2
(

1− ϕp−1
)}
, (63)

where we take mass mp = m and coupling constant gp = g. Now we intro-
duce a new Lagrangian L(φ) by the following steps:

Lp(ϕ)→
∏

p

Lp(ϕ)→ AC
∏

p

Lp(ϕ) = L(φ), (64)

where AC means analytic continuation, and introduced new scalar field is
denoted by φ. The explicit form of L(φ) is

L =
mD

g2
ζ(2)

{1

2
φ
[ 1

ζ
(

2
2m2 − 1

) +
1

ζ
(

2
2m2

)
]
φ− φ2AC G(φ)

}
, (65)
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where G(φ) =
∏
p(1 − φp−1). Infinite product

∏
p(1 − φp−1) is convergent

if |φ| < 1. One can easily see that G(0) = 1 and G(1) = G(−1) = 0.
The corresponding equation of motion is

[
1/ζ
( 2

2m2
− 1
)

+ 1/ζ
( 2

2m2

)]
φ = 2φAC G(φ) + φ2AC G′(φ) (66)

and has φ = 0 as a trivial solution. In the weak-field approximation (i.e.
|φ(x)| � 1), equation of motion (66) becomes

[
1/ζ
( 2

2m2
− 1
)

+ 1/ζ
( 2

2m2

)]
φ = 2φ. (67)

The potential V (φ) = −L(2 = 0) is

V (φ) =
mD

g2
ζ(2) [7 +AC G(φ)] φ2, (68)

where ζ(−1) = −1/12 and ζ(0) = −1/2 are taken into account. This
potential has local minimum V (0) = 0 and values V (±1) = 7mD. To
explore behavior of V (φ) for all φ ∈ R one has first to investigate properties
of the function G(φ).

Mass spectrum of M2 is determined by solutions of equation

ζ−1
(M2

2m2
− 1
)

+ ζ−1
(M2

2m2

)
= 2. (69)

There are many tachyon solutions.
Remark. The difference between Lagrangians L (65) (multiplicative

approach) and L−µ (47) (additive approach) is practically in functions G(φ)
and F (φ). Since

G(φ) =
∏

p

(
1− φp−1

)
= 1− φ− φ2 + φ3 − φ4 + ... (70)

and

F (φ) =
∞∑

n=1

µ(n)φn−1 = 1− φ− φ2 − φ4 + φ5 − . . . (71)

it follows that these functions approximatively have the same behavior for
|φ| � 1. Hence, in the weak-field approximation these Lagrangians describe
the same scalar field.



Zeta Strings 27

5. Concluding Remarks

In this review article, seven possible Lagrangians for zeta strings are pre-
sented. These Lagrangians contain non-polynomial nonlinearity and space-
time nonlocality. This nonlocality is encoded in the Riemann zeta function
with d’Alembert operator 2 as its argument. The corresponding potentials,
equations of motion and the mass spectrum formulas are also presented.
All of these seven models of zeta strings contain the Riemann zeta function
and have some intriguing properties that deserve further investigation.

Zeta-string model presented in Section 4.1.5 is a new one and further
investigation will be presented elsewhere. In [6], Lagrangian for coupled
open and closed zeta string is constructed.

Instead of the Riemann zeta function one can try construction of La-
grangians with some similar functions. In [15], embedding of the Dirichlet
L-function was proposed.

A sum of Lagrangian L1 (16) with any of the above zeta-string La-
grangians should give some information about connection between ordinary
and zeta strings.

Note that an interesting approach towards a field theory and cosmology
based on the Riemann zeta function and its generalizations is proposed in
[17], see also [4]. In [5], the vacuum state of the adelic harmonic oscillator
is connected with the Riemann zeta function in the form of its functional
relation.
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Abstract

In this article we are going to explain why we need string theory. Then we
introduce motivation for so called M-theory and explain the role of S-duality and
T-duality in better understanding M-theory. In the second part we will discuss
T-duality with more details. We will establish standard approach to T-duality, so
called Buscher approach. Then we will show that double space approach, which is
permutation of some coordinates in the double space, is equivalent to the Buscher’s
one. This clearly explains why T-duality in double space is nonphysical transfor-
mation. We will also briefly discuss relation between T-duality and non-geometric
background.

1. Introduction

The string theory is the attractive idea which attempts to solve some long
term problems of fundamental physics. It claims to describe all fundamental
forces in nature, and in some most optimistic predictions it is a candidate
for the theory of everything [1]-[5] .

In this article we will try to explain what are the unresolved problems
in modern physics which encouraged us to introduce new theory. Also
we will consider what our expectations, that string theory can solve these
problems, are based on.

There exists five consistent versions of superstring theory. It was con-
jectured that they were different limiting cases of a single theory, known
as M-theory. It is candidate for describing all fundamental forces and all
forms of matter. Today we still do not understand properly meaning and
structure of M-theory. Until this is achieved, a prominent scientist E. Wit-
ten has suggested that the M should stand for ”Magic”, ”Mystery”, or
”Membrane”.

Up to now, we know formulation of all five consistent superstring the-
ories, but we do not know formulation of M-theory. One of approaches
in understanding M-theory is unification of all T-dual theories in double
space.

*Work supported in part by the Serbian Ministry of Education, Science and Techno-
logical Development, under contract No. 171031.

� e-mail address: sazdovic@ipb.ac.rs
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2. Why string theory?

To understand the motivation to introduce string theory, it is useful to re-
mind ourselves to main achievements and main problems of modern physics.
It is well known that today there are two fundamental theories. The first
one is quantum field theory which describes electromagnetic, weak, and
strong interactions of elementary particles on quantum level. The second
is general relativity which describes gravity at classic level. Let us stress
that both theories have strong experimental confirmation.

The unified theory should include both of the above theories. Some
people call it ”Quantum gravity”. There are several candidates for ”Quan-
tum gravity”. The most famous are Kaluza-Klein theory, super-symmetry
and supergravity, non-commutative space-time, loop quantum gravity and
superstring theory. The superstring theory in some way involves all other
approaches. In addition to unify gravity with quantum theory, string theory
unites all known interactions.

2.1. Problem with unification of gravity with quantum theory

The main problem of quantum field theory is appearance of ultra-violet
divergences at small space-time distances. So, if we want to have theory
free from ultra-violet divergences we must search for theory with radical
change at small distances. The string theory is just that type of theories.
It is based on assumption that elementary objects are not point (particles)
but they are one-dimensional (strings).

Note one immediate consequence. A one-dimensional object may have
two topological forms. Open strings describe electro-weak and strong in-
teractions while closed strings describes gravity.

It is expected that the strings become relevant at Planck scales LP =√
~G
c3

≈ 1.6 × 10−35m. Note that the characteristic length of the string is

much smaller than the scales where today’s physics takes place.

2.2. Why string theory is a candidate for the theory of every-
thing?

Why some people believe that string theory is good candidate for the theory
of everything? Because it has three important features.

1. The closed string contains the theory of general relativity;
2. the open string contains non-abelian gauge theory and
3. in string theory there is no ultra-violet divergences on small distances.
There is important consistency condition in string theory. This is the

requirement that quantum theory keep the symmetries of classical one.
In particular, this means that it remains invariant under two-dimensional
conformal transformations.

Requirement for absence of conformal anomaly leads to conditions which
can be interpreted as target space equations of motion. One of them has
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formally the same form as Einstein’s equation

Rµν −
1

2
gµνR+O(α′R−2

c ) = 8GNTµν , (1)

where gµν is the metric tensor, Rµν is the Ricci curvature tensor, R is the
scalar curvature, GN is Newton’s gravitational constant and Tµν is energy-
momentum tensor. Here we put the speed of light to be equal to unity,
(c = 1). The last term on the left hand side is string theory correction. It
is proportional to the Regge slope parameter α′.

Unlike Einstein’s equation, which is valid at four dimension, the equa-
tion for strings is defined in the critical number of dimensions (26 for bosonic
and 10 for superstring). So, we supported item 1. because requirement of
consistency in string theory produced generalized Einstein’s equation.

There are some degrees of freedom that are localized only on the end
points of the open string. They are described by vector fields. There exist
new consistency conditions (similar to that in the case of closed strings) for
the vector fields. The first nontrivial term of the new nonlinear equation is
just Yang-Mills equation, which supports item 2.

In order to calculate the Feynman diagrams it is necessary to integrate
over all possible trajectories. In the case of the particles, when the points of
interaction become infinitely close, coresponding propagator goes to infin-
ity. There is no similar analogy in string theory, because there is no point
interactions. This supports item 3.

2.3. Consistent superstring theories

It is known that there are five consistent versions of superstring theories
[4]. These are: type I, type IIA, type IIB, and two heterotic string theories.
Since string theory pretends to be unique theory of everything the question
is why there is not just one consistent theory? The other way we can ask:
which of these five theories is real? It turns out that all five theories are
real.

There is interesting suggestion for the solution of the problem. In fact all
five superstring theories are special limiting cases of an eleven-dimensional
theory called M-theory. All these theories are connected in nontrivial ways.
In fact different string theories are related by T-duality and S-duality. The
T-duality means that strings propagating on completely different spacetime
geometries may be physically equivalent. The S-duality means that system
of strongly interacting strings can be viewed as a system of weakly interact-
ing strings. In absence of an understanding structure of M-theory, Witten
has suggested that the M should stand for Magic, Mystery, or Membrane.

The important question appears: how to find fundamental formulation
of M-theory? The possible answer is to construct the theory that contains
initial and all dual theories.
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3. T-duality

The strings, as extended objects, can see the geometry of space-time dif-
ferent from particles. Duality connects theories that have different formu-
lations but the same physical content.

T-duality is a fundamental characteristic of string theory [6, 4, 5]. As
a consequence of T-duality there is no physical difference between string
theory compactified on a circle of radius R and circle of radius 1/R. This
conclusion can be generalized to tori of various dimensions. The T-duality
is feature that has no analogy in the world of particles.

Compactification on the radius R has two consequences. First, the
translation operator for 2πR does not affect the states if e−i2πRp = 1.
So, the momentum is quantized p = n

R , (n ∈ Z) and consequently some
conditions are lost. Both strings and particles can see this effect.

On the other hand, some new topological states appear. These are the
number of windings m, defined as xµ(σ + 2π) − xµ(σ) = 2pRm, (m ∈ Z).
Only an extended object, such as strings, can see this effect.

In the present article we will investigate only T-duality, which is the
subject of the research of the group from Institute of Physics in Belgrade,
[8]- [15].

3.1. Action

The bosonic string sigma model, describes the bosonic string moving in a
curved background. The dynamics is described by the action [4, 5]

S[x] = κ

∫

Σ
d2ξ

√−g
[1
2
gαβGµν [x] +

ϵαβ√−g
Bµν [x]

]
∂αx

µ∂βx
ν . (2)

The integration goes over two-dimensional world-sheet Σ parametrized by
ξα (ξ0 = τ, ξ1 = σ). There are two background fields: a metric tensor
Gµν , and a Kalb-Ramond field Bµν . Here xµ(ξ), µ = 0, 1, ..., D − 1 are
the coordinates of the D-dimensional space-time and gαβ is the intrinsic
world-sheet metric.

Varying the action (2) over xµ, one obtains the equations of motion

∇±∂∓xµ + Γµ
∓νρ∂±x

ν∂∓xρ = 0 . (3)

Here we introduced the covariant derivative

∇± = ∂± + nω± , (4)

and the generalized connection

Γµ
±νρ = Γµ

νρ ±Bµ
νρ, (5)

in terms of the Christoffel symbol Γµ
νρ = 1

2(G
−1)µσ(∂νGρσ+∂ρGσν−∂σGνρ)

and the field strength of Kalb-Ramond field Bµν , B
µ
νρ = (G−1)µσBσνρ =

(G−1)µσ(∂σBνρ + ∂νBρσ + ∂ρBσν).
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The principle of stationary action δS = 0, beside equations of motion
gives the boundary conditions

γ(0)µ (x)δxµ/σ=π − γ(0)µ (x)δxµ/σ=0 = 0 , (6)

where we introduced useful expression as

γ(0)µ (x) ≡ δS

δx′µ
= κ

(
2Bµν ẋ

ν −Gµνx
′ν
)
. (7)

3.2. Buscher T-duality procedure for constant background

T-duality [5], interchanges the string momenta and winding numbers, leav-
ing the spectrum unchanged. On the level of string sigma model it was
given by Buscher procedure [6]. It can be applied along isometry direc-
tions, such that background fields do not depend on coordinates xµ.

The Buscher procedure contains a few steps. First we should gauge
global symmetries δxµ = λµ, substituting derivatives ∂αx

µ with covariant
ones ∂αx

µ → Dαx
µ = ∂αx

µ + vµα , where vµα are gauge field. In such away
we can obtain gauge invariant Lagrangian.

Then we introduce field strength for gauge fields, Fµ
αβ = ∂αv

µ
β − ∂βv

µ
α.

In order to obtain physically equivalent theory (the T-dual theory) we will
require that gauge fields do not have any degrees of freedom. We can achieve
it with demand that field strength is zero, Fµ

01 ≡ Fµ = 0. Therefore, we
can introduce invariant action

Sinv(x, y, v) = κ

∫

Σ
d2ξ

[
(
ηαβ

2
Gµν + εαβBµν)Dαx

µDβx
ν +

1

2
yµF

µ

]
, (8)

where yµ is Lagrange multiplier.
Next, we can use gauge fixing xµ = 0, which produces gauge fixed action

Sfix(y, v) = κ

∫

Σ
d2ξ

[
vµα

(
ηαβ

2
Gµν + εαβBµν

)
vνβ +

1

2
yµF

µ

]
. (9)

Now, we can check that the last action is equivalent to the initial one.
Equation of motion with respect to Lagrange multiplier yµ produces ∂αv

µ
β−

∂βv
µ
α = 0, with the solution vµα = ∂αx

µ. Substituting it in the previous
relation we can conclude that gauge fixed action turns to the initial one,
Sfix → S(x).

Elimination of gauge fields vµα on their equations of motion produces
T-dual action

⋆S(y) = κ

∫
d2ξ ∂+yµ

⋆Πµν
+ ∂−yν =

κ2

2

∫
d2ξ ∂+yµθ

µν
− ∂−yν , (10)
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where

Π± ≡ Bµν ±
1

2
Gµν , θµν± ≡ θµν ∓ 1

κ
(G−1

E )µν , (11)

and

GE
µν ≡ Gµν − 4(BG−1B)µν , θµν ≡ −2

κ
(G−1

E BG−1)µν . (12)

The dual Action ⋆S(y) has the same form as initial one

⋆S(y) = κ

∫

Σ
d2ξ ∂αyµ

(
ηαβ

2
⋆Gµν + εαβ⋆Bµν

)
∂βyν , (13)

but with T-dual background fields

⋆Gµν = (G−1
E )µν , ⋆Bµν =

κ

2
θµν . (14)

3.3. T-duality transformation of variables for constant background

If we equate solutions for gauge field vµα (in two cases when we used equa-
tions of motion with respect to the Lagrange multiplier yµ and to the gauge
fields vµα) we obtain T-dual transformations of the coordinates

vµ± ∼= ∂±xµ ∼= −κΘµν
± ∂±yν . (15)

The inverse T-duality transformation takes a form

∂±yµ ∼= −2Π∓µν∂±xν . (16)

In the canonical approach we can rewrite above expressions as

κx′µ ∼= ⋆πµ , πµ ∼= κy′µ , −κ ẋµ ∼= ⋆γµ(0)(y) , γ(0)µ (x) ∼= −κ ẏµ . (17)

4. Unification of all T-dual theories in doubled space

For better understanding M-theory one should unify all T-dual theories.
Up to now there was partial success: unification of all theories with fixed
number d of T-dualization (d = 1, 2, · · ·D). This approach has attracted
a lot of attention, but the problem is that for each d there is a different
formulations of unified theory. We still need only one theory, which contains
all T-dual theories.

Following [7], [8] and [9] we will start with T-dual transformation laws
along all coordinates

∂±xµ = −κΘµν
± ∂±yν , ∂±yµ = −2Π∓µν∂±xν . (18)
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Separate parts with ε±± = ±1 and η±± = 1 we obtain

±∂±y = GE∂±x− 2(BG−1)∂±y± , ∂±x = 2(G−1B)∂±x+G−1∂±y . (19)

In doubled space with coordinates

ZM =

(
xµ

yµ

)
, (20)

we can rewrite equations (19) as

∂±ZM ∼= ±ΩMNHNK ∂±ZK , (21)

where HMN is generalized metric

HMN =

(
GE

µν −2Bµρ(G
−1)ρν

2(G−1)µρBρν (G−1)µν

)
, (22)

and

ΩMN =

(
0 1
1 0

)
. (23)

4.1. T-duality along all coordinates can be realized by replace-
ment xµ with yµ

In the double space we are able to represent the backgrounds of all T-dual
theories and T-duality transformations of coordinates in unified manner.
This can be realized by exchanging places of some coordinates xa, along
which we want to perform T-duality and the corresponding dual coordi-
nates ya. In such approach it is evident that T-duality relates physically
equivalent theories.

Let us first consider the case when we perform T-duality along all co-
ordinates xµ. Then we have

⋆ZM =

(
yµ
xµ

)
=

(
0 1
1 0

)(
xµ

yµ

)
= T Z . (24)

Requiring that T-dual transformation for double coordinates ⋆ZM has
the same form as initial one

∂±⋆ZM ∼= ±ΩMN⋆HNK ∂±⋆ZK , (25)

we find expression for T-dual generalized metric, ⋆H = T HT .
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4.2. T-dualization along arbitrary number of coordinates

Let us now consider the case when we perform T-duality along some subset
of coordinates xa. Then we can realize replacement xa with ya (a =
1, 2, · · · d) as

ZM
a = T aM

NZN




ya
xi

xa

yi


 =




0 0 1a 0
0 1i 0 0
1a 0 0 0
0 0 0 1i







xa

xi

ya
yi


 . (26)

It produces T-dual background fields in complete agreement with Buscher
approach.

This interpretation of T-duality (as permutation of the coordinates in
double space) works for: bosonic string with flat background [8], bosonic
string with weakly curved background [10, 9], Type IIA and Type IIB
superstrings [11], open bosonic string with Neumann AN

a and Dirichlet AD
i

gauge fields [12, 13] and for fermionic T-duality [14, 15].

4.3. Example: Three torus

As an example, let us consider three torus with nontrivial components of
the background fields

Gµν = δµν , (µ, ν = 1, 2, 3) B12 = −1

2
Hx3 . (27)

All T-duality transformations between these theories are shown in the
diagram

1S(y1, x
2, x3) −→T2

12S(y1, y2, x
3)

T1

↗ ↗T1 ↘T3 T3

↘

S(x
1
, x

2
, x

3
)

T2
−→ 2S(x1, y2, x

3) 13S(y1, x
2, y3, V

3)
T2
−→ 123S(y1, y2, y3, V

3
)

T3

↘ ↗T1 ↘T3 T1

↗

3S(x1, x2, y3, V
3) −→T2

23S(x1, y2, y3, V
3) .

In the literature the theories S, 1S, 12S and 123S are known as theories with
H, f ,Q and R fluxes respectively.

All theories when we performed T-dualization along x3 (note that Kalb-
Ramond fiels Bµν depend on x3) are non-geometric, with non trivial R
fluxes. These are the theories 3S, 13S, 23S and 123S and they depend on
non local expression V 3.

5. T-duality and non-geometric background

The Buscher’s original procedure works for constant background and i all
cases when we perform T-dualization along some coordinates (let us say xa),
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such that background fields do not depend on xa. In both cases Abelian T-
duality has been applied along the coordinates with global shift symmetry.

The most interesting case is when we try to perform T-dualization along
non-isometry directions, along some set of coordinates xa such that back-
ground fields do depend on them, [10]. Then we should apply the gener-
alized Buscher’s procedure, developed in Refs. [10, 16]. In that case, the
expression for T-dual background fields (14) formally remain the same but
the argument of T-dual background fields is not simply the T-dual variable
ya. It becomes the line integral of world-sheet gauge fields va+ and va−, or
exactly V a[v+, v−] ≡

∫
P dξαvaα =

∫
P (dξ

+va+ + dξ−va−). On the equations of
motion the line integral does not depend on the path P . On the solution
for gauge fields it turns to the expression V a = −κ θabyb +G−1ab

E ỹb, where

ỹa is double of T-dual variable ya which satisfy ˙̃ya = y′a and ỹ′a = ẏa. Let
us stress that in such cases T-dual theories becomes locally non-geometric
because the argument of background fields is the line integral.

Let us briefly discuss the Buscher procedure for the Lagrangian in
canonical form S =

∫
d2ξ[πµẋ

µ − H(x, x′, π)]. Here, H is Hamiltonian
density and x-dependence comes from the arguments of background fields.
In generalized Buscher’s procedure the corresponding auxiliary action takes
the form Saux =

∫
d2ξ[πµv

µ
0 −H(V, v1, π)− κ(vµ0 y

′
µ − vµ1 ẏµ)]. Formally, we

substitute ẋµ → vµ0 , x
µ → V µ and add the last term with Lagrange mul-

tiplier yµ. It easy to check that on the equation of motion with respect to
Lagrange multiplier yµ, the auxiliary action Saux turns to the initial action
S.

If we work only with isometry directions then the background fields and
consequently the Hamiltonian density H do not depend on xµ. It means
that after substitution xµ → V µ the Hamiltonian density does not depend
on V µ. Varying Saux with respect to vµ0 we obtain relation πµ ∼= κy′µ. This
is second relation in our equation (17). When we perform T-dualization
along non-isometry directions then the argument of T-dual background
fields V µ is a non-local expression because it is a line integral of both vµ0
and vµ1 . Variation with respect to vµ0 produces a new term and we obtain

κy′µ = πµ − κ

3
Bµνρx

′νxρ , (28)

where Bµνρ is field strength for Kalb-Ramond field Bµν .

5.1. Nonassociativity of R-flux background

The relation (28) is origin of closed string non-commutativity, see Ref.[17].
In fact coordinates of T-dual space yµ depend on both initial momenta πµ
and initial coordinates xµ. Since the initial space is geometric one, the
standard Poisson algebra is satisfied

{xµ(σ), πν(σ̄)} = δµνδ(σ − σ̄) . (29)
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It means that coordinates of T-dual space, yµ and yν have non-trivial com-
mutation relations

{yµ(σ), yν(σ̄)} ∼= −1

κ
Bµνρ

[
xρ(σ)− xρ(σ̄)

]
θ(σ − σ̄) , (30)

where the function θ(σ) is defined as

θ(σ) ≡
{

0 if σ = 0
1/2 if 0 < σ < 2π, σ ∈ [0, 2π].
1 if σ = 2π

(31)

For σ = σ̄ we obtain that all Poisson brackets vanish, and consequently,
coordinates commute. But, taking σ = σ̄ + 2π we obtain the closed string
non-commutativity relation

{yµ(σ + 2π), yν(σ)} ∼= −2π

κ
BµνρN

ρ , (32)

where Nµ = 1
2π [xµ(σ + 2π)− xµ(σ)] is winding number of the original

coordinates.
We expect full T-dualization along all coordinates corresponds to the

so called R-flux. To check it out we are going to calculate characteristic
features of R-flux: non-associativity of the coordinates and breaking of
Jacobi identity.

Because expression (28) is bilinear in initial coordinates xµ, the com-
mutator of two T-dual coordinates (30) is linear in xµ. It is origin of
non-associativity of T-dual coordinates, [17]. Reducing our procedure to
three dimensions from (28) and (30) we obtain

{{yµ(σ1), yν(σ2)}, yρ(σ3)} − {yµ(σ1), {yν(σ2), yρ(σ3)}}

=
1

2κ2
Bµνρ [2θ(σ3 − σ2)θ(σ2 − σ1) + θ(σ1 − σ3)θ(σ3 − σ2)

+θ(σ3 − σ1)θ(σ1 − σ2)] .

The last relation confirms breaking of Jacobi identity

{yµ(σ1), yν(σ2), yρ(σ3)} ≡ {{yµ(σ1), yν(σ2)}, yρ(σ3)}
+ {{yν(σ2), yρ(σ3)}, yµ(σ1)}+ {{yρ(σ3), yµ(σ1)}, yν(σ2)}

=
1

κ2
Bµνρ [θ(σ1 − σ2)θ(σ2 − σ3) + θ(σ3 − σ1)θ(σ1 − σ2)

+ θ(σ2 − σ3)θ(σ3 − σ1)] .

Consequently, the background of the T-dual theory depends on nonlocal
variable V µ which incorporates main features of the non-geometric spaces.
It is clear that T-dualization along non-isometry directions corresponds to
non-geometric T-dual theories.
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6. Conclusion

At the beginning of this article we discussed the problems of contemporary
physics and offer some possible solutions. We emphasized the role of string
theory and M-theory. Later we discussed T-duality, as one of the main link
in understanding M-theory.

We constructed the theory in double space which contains all T-dual
theories. We expect that it can be a good candidate on a path to better
understanding M-theory. In the standard formulation, T-duality trans-
forms the initial theory to the equivalent one, T-dual theory. The double
space formulation contains both initial and T-dual theories and T-duality
becomes the global symmetry transformation.

Let us stress that the 2D dimensional space, beside initial D dimen-
sional space-time coordinates xµ contains the corresponding T-dual coordi-
nates yµ. This extended space with the coordinates ZM = (xµ, yµ) we call
double space. Its introduction makes it possible to offer simple formulation
for T-duality. It can be realized by exchanges the places of some subset of
the coordinates xa and the corresponding dual coordinates ya along which
we perform T-dualization. This permutation produces exactly the same
T-dual background fields and T-duality transformations as in the standard
approach of Refs.[8, 9]. So, double space approach is in fact permutation
of some coordinates in the double space and consequently explains why
T-duality is nonphysical.

We also discus relation between T-duality and non-geometric back-
ground. The non-geometric background is usually connected with R-flux,
which main characteristics are non-associativity and breaking of Jacobi
identity. In our approach, the initial theory is geometric while all the other
(T-dual) theories are non-geometric and additionally non-local. The T-dual
coordinate transformation laws connecting these theories.

For further understanding M-theory it is important to include S-duality.
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[12] B. Sazdović, EPJC 77 (2017) 634.
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[15] B. Nikolić and B. Sazdović, Fermionic T-duality in fermionic double

space �Nucl. Phys. B 917 (2017) 105.
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On the nature of optical rogue waves∗

Milivoj Belić†
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Rogue waves are giant nonlinear waves that suddenly appear and disappear in
oceans and optics. We discuss the facts and fictions related to their strange na-
ture, dynamic generation, ingrained instability, and potential applications. We
present rogue wave solutions to the standard cubic nonlinear Schrödinger equa-
tion that models many propagation phenomena in nonlinear optics. We propose
the method of mode pruning for suppressing the modulation instability of rogue
waves. We demonstrate how to produce stable Talbot carpets – recurrent images
of light and plasma waves by rogue waves, for possible use in nanolithography.
Finally, we display how statistical analysis based on inadequate numerics can lead
to misleading conclusions on the nature of rogue waves.
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1. Introduction

Nonlinear Schrödinger equations (NLSEs) of different orders continue to
elicit intense attention of numerous research groups around the world, for
their utility in various branches of mathematics and physics [1, 2, 3, 4,
5, 6, 7, 8]. Here, we are focused on the simplest cubic one-dimensional
NLSE arising in many fields of nonlinear and fiber optics. In particular, we
are interested in the unstable solutions of the model when the modulation
instability sets in.

Modulation instability (MI) is the basic nonlinear optical process in
which a weak periodic perturbation of the fundamental pump wave pro-
duces an exponential growth of a finite number of spectral sidebands locked
to and growing at the expense of the pump [4, 5, 9]. Although commonly
known as the Benjamin-Fair instability of Stokes waves that appeared in
the nineteen-sixties, the MI of the cubic NLSE debuted already in 1947,
in the Bogoliubov’s work on the uniform Bose gas [10]. It is widely be-
lieved that MI is the root cause of the appearance of rogue waves (RWs)
in nonlinear optics. The problem is, how to systematically incorporate the
process of MI into the dynamics of generation and observation of RWs in
the NLSEs of different types.

A convenient handle in this process is provided by the existence of a
family of exact solutions to the basic cubic NLSE in the form of Akhmediev
breathers (ABs), Kuznetsov-Ma (KM) solitons, and the Peregrine soliton,
which may be regarded as the elementary solutions on a finite background
from which higher-order RW solutions can be formed. In this sense, espe-
cially relevant seem to be ABs [11, 12], which can be generalized to the
doubly periodic solutions (as well as to the extended NLSE models). They
allow for an easy systematic buildup of higher order breathers that can be
regarded as prototype RWs [13, 14].

The complication is that these basic and higher-order solutions repre-
sent homoclinic orbits of unstable Stokes waves in the dynamics of cubic
NLSE [15, 16, 17, 18]. The generic long-time dynamics of modulated Stokes
waves, for example ABs with two or more unstable modes, is chaotic. Once
the system, for a range of relevant parameters and initial and boundary
conditions, enters homoclinic chaos, the predictive power of the model di-
minishes. The question has even been raised whether the chaos seen belongs
to the model itself or is induced by the numerical procedure applied [15, 16].

For these reasons a school of thought has emerged which holds that it is
not important to follow exact dynamics of individual members of the family
of exact solutions, but to look at the statistics of RWs in the chaotic regime
[4, 6, 13, 19, 20]. Optical RWs are rare extreme events in the fluctuation of
optical fields, therefore their statistical features, such as long-tailed proba-
bility distributions, should be considered as their defining features. Thus,
one should proceed with the numerical solution of different NLSEs with
appropriate initial conditions seeded with noise of various types, and after
many runs compare the associated statistics of the resulting field distribu-
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tions with the available experimental data.
In this paper, we offer a different point of view. It is our belief that

for specific applications one still must perform carefully designed numerical
simulations of individual well-defined RW solutions, even when it leads to
following their dynamics deep in the chaotic region. The general idea is to
discern order from chaos. The specific goal is to investigate the possibility
of producing Talbot carpets out of ABs of different orders, with an eye
on possible applications in nanolithography. Such an investigation requires
launching an exact breather and following its repeated self-imaging recur-
rences for as long as possible. This goal is in direct collision with the basic
tenets of homoclinic chaos; homoclinic solutions are statistically unlikely
to be physically observable. A way must be found to mitigate the unavoid-
able impact of MI and the attending chaos. To this end, we introduce the
procedure of mode pruning.

Thus, we examine how AB and RW solutions are obtained for the NLSE
and used to accomplish the goal stated. In this endeavor of immense impor-
tance are the analytical solutions to the NLSE that are periodic both along
the spatial and temporal axes, and can be viewed as Talbot self-images,
introduced in [12]. This study was extended in [21, 22], where the nonlin-
ear Talbot carpets of rogue waves were reported for the first time. These
solutions are associated with the Talbot effect, first described in the 19th
century [23], about the same time the solitary waves were discovered. An
interesting feature of the nonlinear Talbot effect is that it only displays the
primary and secondary images.

The Talbot effect is a near-field diffraction effect, observed when light
beams diffract at some periodic structure (such as gratings) and produce
recurrent self-images at equidistant planes. In-between the planes, frac-
tional and even fractal images can be observed, leading to intricate light
patterns that are called the Talbot carpets. Later, the self-imaging phe-
nomena have been reported in many areas of physics, such as atomic [24, 25]
and quantum [26] optics, waveguide arrays [27], Bose-Einstein condensates
[28, 29], photonic lattices [30], and x-ray imaging [31]. Talbot self-images
can even be regarded as an example of Fermi-Pasta-Ulam recurrence [9].
Nonlinear Talbot effect from nonlinear photonic crystals was experimen-
tally demonstrated in [32]. An overview of the recent advances of Talbot
effect in modern science is presented in [33].

The underlying themes of this paper can be described as follows. We
present the dynamical generation of breathers and rogue waves in Talbot
carpet-like arrangements, for the cubic NLSE. We calculate the first and
higher-order breathers using Darboux transformation (DT) and extract ini-
tial conditions in a wide box that is a multiple of the main breather’s period
[34]. We invent two pruning procedures for Fourier modes, to suppress mod-
ulation instability that ruins the double-periodic pattern of high intensity
peaks.

But, the central theme of this paper is concerned with the conflicting
opinions formed about the nature of RWs: Are they linear or nonlinear;
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Random or deterministic; Numerical or physical? A short and in our opin-
ion correct answer to these nagging questions is as follows.

Rogue waves are essentially nonlinear, because their cause is the modu-
lation or Benjamin-Fair instability. They are deterministic, because modu-
lation instability leads to homoclinic chaos, which by its nature is determin-
istic. They are physical, because they are observed in many experiments
and media. Now, there exist reservations to these facts, depending on how
one generates and analyzes RWs. This especially holds if the work is sta-
tistical and numerical in nature. We’ll come to these reservations later in
the paper.

2. Rogue wave solutions to the NLSE

To recap, we discuss the nature of optical rogue waves in the cubic NLSE,
in view of conflicting opinions expressed in the literature. In particular,
as already mentioned, we address three pairs of opposing suppositions on
their nature: Linear vs. nonlinear [4, 6]; random vs. deterministic [19, 54];
and numerical vs. physical [15, 16]. A short answer to these suppositions
is that rogue waves in optics are essentially nonlinear, deterministic, and
physical. They are nonlinear because the major cause of rogue waves is
the modulation or Benjamin-Feir instability, which by its nature is the
basic nonlinear optical process. Rogue waves are deterministic because
modulation instability leads to deterministic chaos; random phenomena
are probabilistic and may look chaotic but are not deterministic. Rogue
waves are physical because they appear in many experiments and media,
with similar statistics. Our opinion is supported by extensive numerical
simulations of the weakly nonlinear Schrdinger equation in different regimes
that touch upon the aspects of all three conflicting suppositions.

Disturbingly, in numerical simulations optical rogue waves may appear
fictitiously, as numerical artefacts. Different numerical algorithms for ex-
actly the same inputs may provide different evolution pictures and dis-
tressingly different statistics. An example of different statistics of the
probability density distributions, obtained by two different numerical algo-
rithms applied to the same input, is provided in Fig. 6 below. There, the
standard beam propagation method, predominantly used in the literature,
predicts the appearance of thousands of rogue waves, whereas the higher-
order more precise symplectic algorithm predicts significantly fewer. Hence,
owing to a vague definition of rogue waves and exponential amplification
of numerical errors, there are situations in which optical rogue waves may
appear as linear, random, and numerical.

2.1. The influence and suppression of modulation instability

Before proceeding to these more subtle points, we start by discussing the
more standard behavior of RWs in the standard NLSE. We study double-
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periodic solutions of the cubic nonlinear Schrödinger equation

iψx +
1

2
ψtt + |ψ|2ψ = 0, (1)

where the transverse variable is denoted by t and the longitudinal variable
by x. The wave function ψ ≡ ψ(t, x) represents the slowly-varying envelope
that could be optical, plasmonic or other in nature.

Various solutions of the basic NLSE and its extensions, such as soli-
tons [48, 49], breathers [49, 50], and RWs [51], have been discussed in the
literature. It is well known that breathers and solitons of arbitrary order
can be obtained analytically using the DT technique. These solutions are
single-periodic: breathers along t, and solitons along x direction. Single-
periodic NLSE solutions, such as ABs, can be utilized to dynamically con-
struct nonlinear Talbot carpets, which are also intimately connected with
the double-periodic solutions of the NLSE.

Let us recall the first-order AB solution,

ψ(t, x) =[
1+

2(1−2a) cosh(λ(t−t0))+iλ sinh(λ(t−t0))√
2a cos(ωx)− cosh(λ(t−t0))

]
exp i(t− t0), (2)

in which both the growth factor λ and the spatial frequency ω are given
in terms of the single parameter 0 < a < 0.5. When a = 0.5 AB turns
into the Peregrine RW and when a > 0.5 it becomes the KM soliton. The
period of an AB (first- or higher-order) is also determined by a [9]:

L =
π√

1− 2a
. (3)

The initial condition for dynamical generation is derived from an exact AB
solution at a certain value of the evolution variable x = x0, using Darboux
transformation [52]. Here, it is essential to adjust the size of the transverse
box (t0, t1) to an integer multiple M of the fundamental breather’s period
and apply periodic boundary conditions,

∆T = t1 − t0 = ML. (4)

Numerical solutions of NLSEs in this paper are obtained using the second-
order split-step fast Fourier transform (FFT) method, except when the
statistics of RWs is discussed. When the box size is exactly equal to the
breather’s fundamental period L, the Fourier harmonics form the basic set
of spatial frequencies

S1 = {ωj = jΩ; | 0 ≤ j < N} , (5)

where Ω = 2π/L is the mode spacing andN the total number of modes. The
mode growing out of this basic set will be the stable fundamental breather
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mode. However, if the box is larger (M > 1), the mode spacing gets smaller
ΩM = Ω/M , and Fourier modes form a new set SM with a larger number of
modes (NM). All modes from SM that are not elements of S1 exponentially
grow from infinitesimal amplitudes, owing to the modulation instability.
Now, the modes from S1 are also under MI and grow exponentially, but
they interfere constructively and only form the fundamental AB mode.

The key point in generating nonlinear Talbot carpets is to suppress
the undesirable unstable Fourier modes. This can be achieved in different
ways. In the simplest, after each numerical iteration one simply eliminates
the unstable subharmonics, leaving only the ones responsible for the for-
mation of the fundamental AB (labeled as 0, ±M , ±2M , ±3M , etc). It
effectively eliminates MI. The procedure is illustrated in Fig. 1. Although
quite drastic, it apparently works. The other ways include suppressing the
unstable modes selectively and to a degree.
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Figure 1: Double-periodic numerical solutions, made of the first-order
NLSE breathers, using the pruning procedure in FFT. The breather pa-
rameter is a = 0.36. (a) One breather in the box, no pruning. (b) Its
spectrum. (c) Three breathers (3 periods) in the box, with the pruning.
(d) The corresponding spectrum.
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Figure 2: Dynamical generation of Talbot carpet from the first-order
breathers using a DT initial condition, with a = 0.36 and M = 5. (a)
A failed attempt, due to MI. (b) The corresponding Fourier spectrum, dis-
playing the loss of Talbot periodicity due to the exponential growth of
non-quintuplet modes. (c) Successful generation of the Talbot carpet using
the pruning procedure. (d) Fourier spectrum after the pruning is applied.

In Fig. 1a we show numerical evolution of the first-order Akhmediev
breather (a = 0.36) when the box size is equal to the breather’s period (M =
1). One can see that the intensity peak at t = 0 is repeated along x-axis
at the Talbot periods, forming a stable mode. This peak is consecutively
shifted for half-a-period along the t-axis, forming the secondary Talbot
image at half the Talbot period. The corresponding Fourier spectrum is
shown in Fig. 1b. Next, we calculate the same breather over three periods
(M = 3). We apply the simple pruning algorithm to Fourier modes, setting
all unstable mode amplitudes to zero except the triplet modes, indexed as
0, ±3, ±6, ±9, and so on. The result is an extended Talbot carpet with
alternate shifting of intensity maxima along x- and t-axes, as presented in
Fig. 1c. The spectrum of the triplet mode amplitudes is shown in Fig. 1d.

In Fig. 2 we display how the simple pruning technique actually works.
We again choose the first-order breather with a = 0.36 and set the numerical
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Figure 3: Same as Fig. 1 but with Gaussian pruning. (a) The carpet. (b)
Its spectrum. The modes at the bottom are the suppressed unstable modes.

box to be exactly five times the breather’s period: M = 5. In this case,
the AB will be formed by the modes A1, A5, A10, ..., ANM . If the pruning
algorithm is not applied, the chaotic behavior ruins the carpet after just
one full Talbot cycle, as shown in Fig. 2a. This is the MI in action: the
unstable modes grow exponentially, and prevent the homoclinic orbit (the
initial AB mode) from returning to itself after more than one cycle. This
is clearly observed in the buildup of Fourier spectrum of all modes (Fig.
2b), which destroys the spatial Talbot periodicity. Note that after the full
cycle, another displaced AB appears but not at half-cycle, interacting with
the full mode. As a result of this interaction, or beating of the two modes,
two second-order ABs (that can be regarded as the second-order RWs)
are formed around x = 45, which constitutes the normal channel for the
production of RWs through MI. However, when the pruning procedure is
applied, all non-quintuplet modes are killed after each iteration. Effectively,
the procedure prevents the orbit to wander in the homoclinic tangle, forcing
it to stick to itself and return back to the starting point. The result is the
perfect nonlinear Talbot carpet (Fig. 2c), with the perfect Fourier spectrum
(Fig. 2d).

In Fig. 3 we illustrate the Gaussian pruning algorithm, in which the
unstable modes are not eliminated completely but suppressed by a Gaussian
factor. Thus, the unstable modes are multiplied by a Gaussian factor that
depends on their strength: when weak, they are allowed to grow; but the
more they grow the more they are suppressed. Effectively, they can grow
only up to a certain level, determined by the Gaussian distribution. In Fig.
3b, the unstable modes, visible at the bottom of the figure, cannot grow
above the level of approximately 10−9.

In Fig. 4 we present the nonlinear Talbot carpet consisting of the
second-order breathers with consequently higher peak intensity. It can be
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Figure 4: Double-periodic numerical solution of NLSE, made of the second-
order breathers, having a = 0.41. The box contains 5 breather’s periods.
The solution is obtained using the pruning procedure.

regarded as a carpet composed of rogue waves. The box size is five times
the fundamental breather period, having a = 0.41. This breather contains
two unstable modes. Initial conditions were derived from DT along a line
passing through the breather’s maximum. As in the previous figures, the
simple pruning algorithm was used, which left only the quintuplet Fourier
modes intact.

2.2. The influence of numerics on the statistics of rogue waves

In this subsection we address the questions pertaining to the statistics of
RWs. But, before going to the details of statistics, let us briefly stress
how we got to this point. To recall, the generating mechanism of optical
rogue waves (RWs) is the Benjamin-Feir or modulation instability (MI).
It is the basic nonlinear optical process in which a weak perturbation of
the background pump wave produces an exponential growth of spectral
sidebands that constructively interfere to build RWs. We have produced
RWs in numerical simulations of the cubic nonlinear Schrdinger equation
(NLSE) with noisy (or other) inputs on the flat background. Optical RWs
represent homoclinic orbits of unstable sideband modes that, due to MI,
generate homoclinic chaos. The question is then whether the chaos seen
belongs to the model itself or is induced by the numerical procedure ap-
plied. Namely, different numerical algorithms represent different dynamical
systems and may generate different homoclinic chaos.
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Figure 5: Evolution of the NLSE wave intensity seeded by white noise (5%
amplitude) around the background intensity of 1. The wave evolution pro-
ceeds from 0 to 6500 steps, but only the first 200 are shown; the transverse
box is from -70 to 70. There are 6.5 x 106 x 2048 grid points and more
than 106 peaks above a threshold of 2. Top: Beam propagation method.
Bottom: Symplectic algorithm.

We address the question by simulating the same equation, with exactly
the same parameters, inputs and boundary conditions, but using different
numerical algorithms. We utilize the standard 2nd-order beam propagation
method and the 4th-order symplectic algorithm. We demonstrate that,
distressingly, different algorithms provide different evolutions and different
statistics of the RW peaks. Even the same algorithms may provide different
evolutions by simply changing the numerical step size. We find that RWs
appear in different algorithms at different places and thus may represent
fictitious structures or numerical artefacts.

An example of two different evolution pictures is provided in Fig. 5.
The evolution of intensity by the two methods appears consistent to about
100 steps (each step represents 1000 numerical iterations) but after that
the distributions become different. The evolution proceeds to 6500 steps,
after which the statistics of the probability density of intensity is formed.
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Figure 6: Statistics of high intensity peaks, obtained from Fig. 5. The
statistics are formed by using two different numerical algorithms: the beam
propagation method (left) and the 4th order symplectic method (right).
The intensity scale starts from the intensity of the Peregrine soliton, IPS=9.
There are about 2640 peaks on the left and 2350 on the right.

It follows the familiar exponential decay of MI-driven systems, which may
not be the case for the density of high intensity peaks, forming RWs (Fig.
6). There are millions of peaks and thousands of RWs here. The statistics
are still similar, but the number of peaks, the maximum of intensity, and
the slope of distributions, among other things, are different. Hence, in
the chaos produced by MI, optical RWs and their statistics may appear as
numerical artefacts and cannot be counted as definite defining features of
the RW phenomena.

3. Conclusion

In conclusion, we have discussed the facts and fictions related to the strange
nature, dynamic generation, ingrained instability, and potential applica-
tions of RWs. We have proposed the method of mode pruning for sup-
pressing the modulation instability of rogue waves. We have demonstrated
how to produce stable Talbot carpets - recurrent images of light and plasma
waves - by rogue waves, for possible use in nanolithography.

We have also discussed the nature of optical rogue waves, in view of
conflicting opinions expressed in the literature. In particular, we have ad-
dressed the three pairs of opposing suppositions on their nature: Linear
vs. nonlinear; random vs. deterministic; and numerical vs. physical. In
summary, a correct answer to the three suppositions is that the rogue waves
in optics are essentially nonlinear, deterministic, and physical. They are
nonlinear because the major cause of rogue waves is the modulation or
Benjamin-Feir instability, which by its nature is the basic nonlinear opti-
cal process. Rogue waves are deterministic because modulation instability
leads to deterministic chaos; random phenomena are probabilistic and may
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look chaotic but are not deterministic. Rogue waves are physical because
they appear in many experiments and media, with similar statistics.

Nevertheless, in numerical simulations optical rogue waves may appear
fictitiously, as numerical artefacts. Different numerical algorithms for ex-
actly the same inputs may provide different evolution pictures and distress-
ingly different statistics. Hence, owing to a vague definition of rogue waves
and exponential amplification of numerical errors, there are situations in
which optical rogue waves may appear as linear, random, and numerical.
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Transverse Transport of Magnetized Particles in
Random Electric Fields∗
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Abstract

The study of anomalous particle transport across a magnetic field is an impor-
tant task of plasma physics. The cause of anomalous transport may be electrostatic
turbulence. In the limit of small correlation times of random fields transport is
diffusive. In the opposite limit of large correlation times transport occurs as ad-
vection. We proposed the statistical approach to description of transport of mag-
netized particles undergoing random isotropic electric fields in a wide range of
correlation times including both limits without use of free parameters. Direct nu-
merical simulations were carried out to verify solutions of the transport equations.
PACS codes: 05.40.-a, 52.25.F

1. Introduction

Plasma in space and laboratory is as a rule in a non-equilibrium state
because of gradients of its density and temperature, as well due to fluxes
of particles and radiation usually passing through it. For this reason waves
with intensity much higher than a thermal level are excited, and nonlinear
wave interactions result in plasma turbulent state. Particle collisions with
random waves bring to anomalous transport. In plasma with high level of
turbulence anomalous transport dominates over classical diffusion caused
by pair particle collisions. Study of turbulent transport is important for
understanding behavior of plasma systems, in particular estimation of the
plasma confinement time in fusion devices.

A great deal of research is focused on a problem of turbulent transport.
Here we consider that aspect of the general problem that relates to depen-
dence of transport coefficients on a correlation time of a random electric
fields. There are two limits of small and large correlation times character-
ized by different modes of particle transport across magnetic field. A small
correlation time, in compare with time evolution of macroscopic charac-
teristics, corresponds to instantaneous collisions, and behavior of particles
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is similar to the classical Brownian motion. In this limit the Corrsin ap-
proximation [1] is valid for statistical description of particle ensemble. The
approximation is based on the assumption that a spatial distribution of
particles in a course of their scattering by random fields remains of the
Gaussian form.

The opposite limit of infinitely large correlation time is realized for
frozen (not dependent on time) random electrostatic fields. Here particle
trapping in closed two-dimensional orbits can occur, and then their spread-
ing becomes rather convective than diffusive. In addition, simulations show
that particle distribution is non-Gaussian. To estimate asymptotic diffusion
coefficients in this limit an analogy with percolation was proposed [2, 3].
Particle transport in two-dimensional Gaussian incompressible stochastic
velocity fields in a wide range of correlation times and with accounts for par-
ticle trapping was later studied using the decorrelation trajectory method
[4, 5, 6].

The description of evolution of particle ensembles is convenient to carry
out in terms of a distribution functions. In [7] it was shown that particle
distribution function in a random external field is governed by a nonlinear
integro-differential equation. Currently, there are no universal methods for
constructing solutions of equations of this type. Here we shall consider an
approximation based on a new closure of statistical equations [8, 12]. The
solutions will give particle transport coefficients in a wide range of corre-
lation times, including both limits. Comparison of our approach with the
decorrelation trajectory method mentioned above and based on a different
closure is given in [13].

The structure of the paper is as follows. In Sec. 2 the equations of
particle microscopic motion in fields with random phases are given in a
drift approximation. They are used for numerical calculation of particle
trajectories. Averaging over realizations gives us evolution of statistical
characteristics of particle ensemble. In Sec. 3 we introduce a new closure
and formulate statistical equations for dispersion of particles in random
frozen field with infinitely large correlation time. These statistical equations
are derived from the same equations of microscopic motion that were used
for simulation. The solution of statistical equations is compared with the
result of numerical simulation. In Sec. 4 our approach is applied to random
fields with finite correlation times. Conclusions are given in Sec. 5.

2. Frozen field with infinite correlation time

First we look at a frozen random electric field. It is characterized by an
infinitely long correlation time and is therefore of particular interest. When
constructing a statistical description, it is usually assumed that there are
two time scales, namely fast time of collisions and slow time of evolution of
a distribution function. The difference in time scales makes it possible to
construct a kinetic equation for a distribution function by averaging over
fast time. In contrast, for statistical description of a particle ensemble in a



Transverse Transport of Magnetized Particles 57

frozen field it is necessary to have a different approach.

Let us consider drift motion of particle guiding centers in random elec-
trostatic field E = −∇Φ given by a potential Φ(r) across a constant uniform
magnetic field B. Extension of our approach for finite Larmor radius may
be found in [9, 10, 11]. Two components of drift velocity vx,y in a plane
perpendicular to the magnetic field are governed by the equations

vx = − ∂

∂y
φ(r), vy =

∂

∂x
φ(r), (1)

where r = (x, y) in Cartesian and (r, θ) in polar coordinates. φ = cΦ/B is
a statistically isotropic stream function. Each realization of φ is supposed
to be a superposition of Nk ×Nϕ harmonics

φ(r, θ) =

Nk∑

i=1

Nϕ∑

j=1

φi cos(kir cos(ϕj − θ) + αi + βj) (2)

with random phases αi and βj . Summation is carried out over wave num-
bers ki and polar angles ϕj which determine a set of two-dimensional wave
vectors. Partial intensities are distributed over wave numbers according to
Gaussian with a width ∆k

φi
2 = φ2

0 g exp

(
− k 2

i

∆k2

)
,

where φ2
0 is a field intensity and g is a normalizing factor. Equations

of motion (1) were solved numerically for a number of realizations. The
statistical characteristics of particle ensemble such as a particle dispersion, a
running diffusion coefficient and a Lagrangian velocity correlation function,
which will be introduced in the next section, were calculated by averaging
over realizations.

Note that particles move along the streamlines corresponding to a fixed
level of potential Φ = const. Fig. 1 shows the potential landscape. Almost
all particles move in closed orbits. The size of the orbits is smaller near
peaks and pits and larger in valleys. For particles uniformly distributed in
space their distribution over potential levels, with account for Eq. (2) and
according to the central limit theorem, is Gaussian. Distribution of orbits
of different sizes will be similar. These properties of orbits are illustrated
in Figs. 2, 3. Here and further on the axes are dimensionless units. The
accuracy of the statistical description can be improved by splitting of the
whole ensemble of particles into subensembles corresponding to different
potential levels.
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Figure 1: Potential landscape.
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Figure 2: Particle orbits at two potential levels differ in size. Particle
population on these levels is shown in Fig. 3.

3. Statistical equations

The equation for distribution function of particles f(r, t) in given velocity
field v reads

∂

∂t
f + v

∂

∂r
f = 0.

This equation is linear, but whether velocities are random it is statistically
nonlinear. To show this we split a distribution function on an averaged
over field realizations component F = ⟨f⟩ and a fluctuation δf , so that
f = F + δf . Kinetic equation for the averaged distribution function is as
follows

∂

∂t
F + ⟨v ∂

∂r
δf⟩ = 0,

where the second term is a collision integral given through an unknown
fluctuation δf . To obtain the collision integral in terms of averaged dis-
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Figure 3: Particle distribution over potential level. The two levels corre-
sponding to the orbits in the previous figure are indicated.

tribution function we follow the paper [7] and express F (r, t) through its
initial value F (r, 0) and the averaged transition probability W (r, t; r′, 0)

F (r, t) =

∫
dr′W (r, t; r′, 0)F (r′, 0).

The transition probability W (also the Green function, or the distribution
function with the δ-like initial condition) is governed by the kinetic equa-
tion with collision integral given in terms of W and the Eulerian velocity
correlation function ⟨vi(r)vj(a)⟩

∂

∂t
W (r, t; r′, t′) =

∂

∂ri

t∫

t′

dτ

∫
daW (r, t;a, τ)⟨vi(r)vj(a)⟩

∂

∂r′j
W (a, τ ; r′, t′),

(3)
with the initial condition

W (r, t′; r′, t′) = δ(r− r′).

Eq.( 3) describes nonlocal in time and space transport. Moreover, this
equation is nonlinear since the nonlocal diffusion coefficient depends on
the transition probability. Methods to find exact solutions of such types
equations are unknown.

But assuming that the particle distribution function is the Gaussian,
the equation (3) is simplified. The assumption was proposed by Corrsin
[1], and it is justified in the limit of small correlation times of random
fields. In this limit Eq. (3) is reduced to

∂

∂t
W (r, t;0, 0) = D(t)∆W (r, t;0, 0), W (r, 0;0, 0) = δ(r− 0). (4)
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The solution of Eq. (4) is the Gaussian

W (r, t;0, 0) = 1/(π⟨r2(t)⟩) exp
(
−r2/⟨r2(t)⟩

)
, (5)

where the mean square particle displacement ⟨r2(t)⟩ is given through the
unknown running diffusion coefficient D(t)

⟨r2(t)⟩ = 2

∫ t

0
D(t′)dt′. (6)

And the diffusion coefficient is obtained by integration of the Lagrangian
correlation function of random velocities VL(t) which is unknown as well

D(t) =

∫ t

0
VL(t

′)dt′. (7)

The closure of set of equations (5-7) is given by the relation between the
Eulerian VE and Lagrangian VL(t) correlation functions:

VL(t) =

∫
da W (a, t;0, 0) VE(a

2). (8)

The Eulerian correlation function VE for a prescribed random field (2) is
calculated by averaging over random phases. As far as the field is statisti-
cally isotropic it depends on squared distance between two points

VE(r
2) = ⟨vx(r) vx(0)⟩+ ⟨vy(r) vy(0)⟩. (9)

The solution of Eqs. (5) - (9) will be illustrated later. The system of
equations presented here is obtained in the Corrsin approximation, which
is often used in the theory of anomalous transport. However, it should
be noted here that the assumption of a small correlation time does not
correspond to a frozen field whose correlation time tends to infinity.

For the frozen field, we propose another closure of statistical equations.
Direct simulation shows, the distribution function is not Gaussian. So to
simplify the problem, we will look not for a particle distribution function,
but only for its second moment which describes a mean square particle dis-
placement (dispersion). The first moment (average particle displacement)
in isotropic fields is zero.

Equations (6) - (7), first formulated by Taylor [14] for particle diffu-
sion under the influence of random fields, do not depend on a shape of a
distribution function. Therefore, they will remain unchanged in the new
system of equations. But the closure for arbitrary correlation times will be
different. Instead of Eq. (8) we assume the following relation between the
Eulerian and Lagrangian correlation functions

VL(t) = VE(⟨r2(t)⟩). (10)
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Then from Eqs. (6), (7), (9), (10) we obtain the equation for evolution of
the particle dispersion

d2⟨r2(t)⟩
dt2

= VE(⟨r2(t)⟩), (11)

where the Eulerian velocity correlation function corresponding to the ran-
dom field (2) is of the form

VE(r
2) = v20 exp(−α){(1− 2α)I0(α) + 2αI1(α)}. (12)

Here I0 and I1 are the modified Bessel functions, v20 is an intensity of
random veocity field related to φ2

0, and α = (1/8)∆k2r2.
The results can be improved by more detailed description of particle

orbits. We take into account that particle motion governed by Eq. (1) oc-
curs along equipotential lines ϕ(r) = const. Simulations show that particles
travel different distances from a starting point at different levels of poten-
tial (Fig. 2). A group of particles on a fixed level of potential constitute
a subensemble. The amplitude of the partial Euler correlation function in
each subensemble is determined by the potential level. The contribution
of each subensembles to statistical characteristics of the whole ensemble
of particles is proportional to their weights. According to the central limit
theorem distribution of particle over subensembles is Gaussian. In addition,
a direct numerical test shows that for finite number of particles in numer-
ical simulation the Gaussian distribution over initial values of potential is
a good approximation (Fig. 3). Eqs. (11), (12) were solved numerically,
and after averaging over subensambles we obtain the Lagrangian veloc-
ity correlation function (10), the running diffusion coefficient (7), and the
mean square displacement (6). In Fig. 4 the Lagrangian velocity correlation
function VL(t) obtained as a solution of Eqs. (10)-(12) is compared with the
Corrsin approximation, Eqs. (5-9), and the result of numerical simulation.
It is important the solution based on the new closure, in contrast to the
Corrsin approximation, recovers negative values of the correlation function
observed in simulation. These negative values reflect particle trapping in
closed orbits shown in Fig. 2.

Double time integration of the Lagrangian velocity correlation function
gives the particle dispersion shown as log-log plot in Fig. 5. The linear
dependence of dispersion on time divides the area of the figure into two
parts corresponding to sub- and superdiffusion. The dispersion of particle
displacements obtained as a solution based on our closure grows slower
than linear law, i.e. manifests the subdiffusive regime caused by particle
trapping. This solution is similar to that obtained in a direct numerical
simulation. In contrast, the Corrsin approximation gives a superdiffusion.
The comparison of our approach with the decorrelation trajectory method
is given in the paper [13].

A frozen field serves as a good test for statistical theories as far as the
common assumption about small correlation time is inappropriate, and it
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is not possible to separate two time scales corresponding to collisions and
evolution of distribution function. In addition, the particle trapping effect
plays a significant role in a frozen field.

The running diffusion coefficient (7) considered in the drift approxi-
mation slowly tends to zero for large times. Zero asymptotic value for
frozen field is explained by particle trapping in closed orbits. Extension of
our method for a finite Larmor radius, when particle orbits are no longer
closed, is given in papers [9, 10, 11].

4. Fields with exponential decay of correlations

After testing Eqs.(6),(7),(9),(10) we apply our method to piece-wise frozen
fields with a finite correlation time. If the phase of the field (2) is jumping,
regularly or randomly, then the correlation function of such field will decay
exponentially. Waves with jumping phases were studied experimentally and
theoretically. They can penetrate in overdense plasma and initiate a new
type of discharge [15, 16]. New features of particle heating by such waves
were discussed in [16, 17].

Let us consider a field which is differ from (2) by a randomly jumping
phase γ(t)

φ(r, θ, t) =

Nk∑

i=1

Nϕ∑

j=1

φi cos (kir cos(ϕj − θ) + αi + βj + γ(t)) , (13)

where γ(t) jumps by an arbitrary value with a frequency ν and the proba-
bility p. Then the Eulerian correlation function VE(r

2) given by Eq. (12)
is transformed as follows

VE(r
2) → VE(r

2) exp (−t/τ). (14)

Depending on the parameters of the phase jumps ν and p time of correlation
decay τ = −1/ [ν ln (1− p)] may vary from zero to infinity.

Eqs. (11), (12), (14) were solved numerically for various correlation
times τ . Particle transport initially is subdiffusive in an interval of few
τ , and then particle dispersion grows linearly in time. This means that
the diffusion coefficient attains a constant asymptotic value. In Fig. 6 the
dependence of the asymptotic diffusion coefficient on the correlation time
is shown in compare with results of direct numerical simulation. At small
correlation times we observe a known diffusion which can be described by
the Corrsin approximation as well. At larger correlation times particle
transport is slowed down. As a correlation time grows, the effect of particle
trapping is becoming increasingly pronounced, and transport looks more
like advection. Obtained solutions describe the transition of transport co-
efficient between two limits of small and large correlation times without use
of fitting parameters, and are in agreement with the results of simulations.
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5. Conclusions

An anomalous transport of charged particles across magnetic field caused
by random electrostatic field was studied in a drift approximation. In
the limit of small correlation times of random fields particle transport is
similar to Brownian diffusion. In the opposite limit of long correlation times
particles are trapped in closed orbits, and transport occurs as advection.
The new closure of statistical equations was considered, and solutions of
these equations give asymptotic transport coefficients in a wide range of
field correlation times. A transition from diffusion to advection mode was
shown without use of free parameters. Obtained results were supported by
direct numerical simulations.
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Abstract

In this paper we review some of the salient results in optimization of financial
portfolios. We commence by considering Markowitz portfolio optimization and its
generalizations. This is followed by portfolio optimization based on maximization
of the expected utility in discrete and continuous time. JEL Code: G11.

1. Introduction

A financial portfolio is a collection of investment assets. In this paper
we consider some of the core techniques aimed at finding the best ex-ante
trade-off between expected return and portfolio risk.

In the first part of the paper (Section 2.) we consider mean–variance
optimization problem. We begin with the simple case when portfolio con-
sists only of risky assets and short sales are not prohibited. An investor
minimizes portfolio variance, the simplest and most frequently used mea-
sure of portfolio risk. At the same time, she aims to achieve a certain level
of the expected return. For each target portfolio return one can, then,
find a closed-form solution for optimal portfolio weights. Additionally, we
consider global minimum variance (GMV) portfolio and argue that truly
optimal are only those portfolios which have the expected return not lower
than this benchmark portfolio. We then extend the analysis along several
dimensions.

In the second part of the paper (Section 3. and 4.) we study portfolio
optimization based on expected utility maximization. In Section 3. we
consider the case of trading in a discrete-time framework. We commence
by introducing the notion of the expected utility and discuss how can one
quantify absolute and relative risk aversion. We explain the connection
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between these measures of risk aversion and the optimal investment pol-
icy. Next, we consider optimal asset allocation for an investor characterized
by a logarithmic utility function and derive—in closed form—the optimal
investment policy both for a single period and in case of multiple invest-
ment periods. We demonstrate that, when parameters of the model do
not change over time, optimal fraction of money invested in risky assets
remains constant. This result is consistent with the general theorem stated
earlier in that section. In Section 4. we consider portfolio optimization
problem in continuous time. As this topic is somewhat more technical we
first explain some of the key notions from stochastic calculus used in the
later development. Subsequently, we derive optimal portfolios for an in-
vestor with logarithmic and more general power utility function. Section
5. concludes.

2. Markowitz portfolio optimization problem

Consider a portfolio of risky assets (e.g., stocks). We can define return on
asset i as a relative change of its price pi in consecutive points in time.
Thus, return on asset i at time t is given by the expression:

rit =
pit+1 − pit

pit
. (1)

For simplicity, we assume that prices are adjusted for dividends. Such prices
are reported habitually by financial information providers. Therefore, the
formula above takes into the account both dividends and capital gains, i.e.,
it reports total returns.

Suppose, further, that we have partitioned funds at our disposal into
fractions corresponding to investments in each asset i ∈ {1, 2, . . . , N},
where N ∈ N. We denote these fractions by wi. Then, N -dimensional (col-
umn) vector of the weights defining our portfolio is w := (w1, w2, · · · , wN )ᵀ.
While the vector of weights may depend on time, in this section we consider
a static investment strategy where investment decision is made at time t
and the realization occurs at time t + 1. Therefore, for simplicity, in this
section we drop the time index for portfolio weights. For an investment
portfolio w, its return at time t is given by the weighted average of asset
returns:

rp =
N∑

i=1

wir
i
t = wᵀ · r. (2)

Here, we have denoted by r := (r1, r2, · · · , rN )ᵀ the (column) vector of
asset returns and by · the scalar product between the two vectors. It is
important to note that, in contrast to w which is determined by us, the
vector of asset returns is determined by market forces. We model market
outcome as drawn by chance. How successful are we going to be as investors
depends, therefore, on our decisions as well as on luck.
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In the early 1950s, Harry Markowitz, then a PhD student in finance at
the University of Chicago, has proposed the following strategy to construct
an optimal financial portfolio (see [1]). Suppose we have a target portfolio
return µ that we expect to receive at the end of our investment horizon
(which is one period as described above). This return represents our in-
vestment goal. In that case, the expected return on a portfolio needs to
satisfy the condition

E (rp) = E

(
N∑

i

wir
i
t

)
=

N∑

i

wiE
(
rit
)

= wᵀ ·m ≥ µ. (3)

Here, m := (m1,m2, · · · ,mN )ᵀ is a (column) vector of expected returns
on individual assets. Apart from this constraint, feasible portfolios need to
satisfy also the following:

N∑

i

wi = wᵀ · 1 = 1, (4)

where 1 := (1, 1, · · · , 1)ᵀ is the N -dimensional (column) vector of ones.
Since we do not want to leave any money on the table (we consider just
a one-period investment), we need to invest it somehow in the N assets.
Markowitz has proposed that out of all portfolios satisfying conditions (3)–
(4) we select the one which has the smallest risk.

In the simplest case, portfolio risk is defined as standard deviation of
portfolio returns (see [1], [2]). Instead of standard deviation, it is more
practicable to minimize its square, i.e., variance. From the properties of
variance of a sum of random variables it follows that:

V (rp) = V

(
N∑

i

wir
i
t

)
= wᵀ ·Σ ·w. (5)

Here, matrix Σ is a covariance matrix of asset returns, which is a (N ×N)-
dimensional, positive-definite, and symmetric matrix. Positive-definiteness
ensures that variance of any portfolio is non-negative. Thus, in this simple
approach the problem of finding optimal portfolio boils down to solving a
quadratic optimization problem for weights w:

min
w

V(rp),

s.t.

{
wᵀ ·m ≥ µ,
wᵀ · 1 = 1.

(6)
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2.1. Solution to the standard Markowitz problem

Problem (6) is called Mean–Variance Optimization (MVO) problem or
Markowitz Optimization problem. Positive-definiteness of covariance ma-
trix Σ and linearity of constraints (3)–(4) ensure that a unique global min-
imum exists. It is clear that the optimal portfolio weights, i.e., the solution
to MVO problem, are functions of the parameter µ, which represents the
target return. Moreover, since higher expected return leads to higher opti-
mal risk, the problem can be restated as follows:

min
w

V(rp),

s.t.

{
wᵀ ·m = µ,

wᵀ · 1 = 1.

(7)

Problem (7) can be solved using the simple Lagrange method. For conve-
nience we introduce a multiplicative factor in front of the objective function:

L =
1

2
wᵀ ·Σ ·w − λ1(wᵀ ·m− µ)− λ2(wᵀ · 1− 1). (8)

The first order conditions with respect to w, λ1, and λ2 are given by the
system of linear equations:

∂L
∂w

= Σ ·w − λ1m− λ21 = 0,

∂L
∂λ1

= wᵀ ·m− µ = 0,

∂L
∂λ2

= wᵀ · 1− 1 = 0.

(9)

Since matrix Σ is positive-definite, it can be inverted. From the first equa-
tion we obtain that the optimal vector ŵ satisfies

ŵ = λ1Σ
−1 ·m + λ2Σ

−1 · 1. (10)

Plugging this expression back into the two constrains and introducing the
notation:

a := mᵀ ·Σ−1 ·m,

b := mᵀ ·Σ−1 · 1,
c := 1ᵀ ·Σ−1 · 1,
d := ac− b2,

the Lagrange multipliers read:

λ1 =
c µ− b
d

,

λ2 =
a− b µ
d

.
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Replacing these expressions into equation (10) for ŵ we finally obtain that:

ŵ = g + µh,

g =
a

d
Σ−1 · 1− b

d
Σ−1 ·m,

h =
c

d
Σ−1 ·m− b

d
Σ−1 · 1.

(11)

Given a target expected return µ, equation (11) demonstrates the way
how to achieve it (ex-ante) with minimal risk. Moreover, g and g + h
both have an economic meaning. Namely, vector g corresponds to optimal
portfolio weights when µ = 0, while g + h corresponds to portfolio with
µ = 1. All other optimal portfolios are just linear combinations (or, in
other words, portfolios) of these two portfolios. Thus, knowing just two
optimal portfolios we can reconstruct the entire efficient frontier, i.e., the
set of all possible optimal portfolios.

2.2. Global minimum variance portfolio

However, this is not the end of the story. Namely, it turns out that not
all portfolios implied by equation (11) are worth investing in, as illustrated
in Figure 1. To find the full set of efficient portfolios we need to compute
first the Global Minimum Variance Portfolio (GMVP). This is achieved by
solving the optimization problem without constraint (3) related to target
return:

min
w

V(rp),

s.t. wᵀ · 1 = 1.
(12)

Following the solution procedure presented in Section 2.1., we utilize
the Lagrange method. The Lagrange function now reads:

L =
1

2
wᵀ ·Σ ·w − λ(wᵀ · 1− 1). (13)

The first order conditions are given by the system of linear equations:

∂L
∂w

= Σ ·w − λ1 = 0,

∂L
∂λ

= wᵀ · 1− 1 = 0.

(14)

The solution is given by:

wg =
1

c
Σ−1 · 1 =

Σ−1 · 1
1ᵀ ·Σ−1 · 1 . (15)

Finally, the corresponding expected return is given by µg := wg
ᵀ ·m. With

this information, we are fully equipped to state an important results in the
modern portfolio theory.
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Figure 1: Unconstrained mean–variance optimization with risk assets.An exam-
ple of an unconstrained Markowitz portfolio optimization for a hypothetical case of three
risky assets (labeled A, B, and C) with expected return and volatility characteristics
(µ, σ): (5%, 10%), (7%, 15%), and (10%, 18%), respectively. The following correlation
structure is assumed: ρAB = 0.3, ρBC = 0.6, and ρAC = 0.2. In the µ–σ plane the risky
assets are represented by green circles. The global minimum variance portfolio (µg, σg)
is the leftmost point on the mean–variance parabola (i.e., the red circle). The dispersed
cloud of light-blue dots represents a set of 10,000 simulated feasible asset mixes. The
envelope parabola is the solution to the mean–variance optimization problem for these
three risky assets. The upper (solid blue) line represent the efficient frontier. The gray
solid line on the lower side of the graph are the inefficient portfolios. For a given level
of expected volatility, the asset mix located on the upper (efficient) frontier has a supe-
rior expected return compared to the corresponding asset mix on the lower (inefficient)
frontier.

Theorem 1 Portfolios in (11) are efficient if and only if µ ≥ µg.
This implies, in particular, that if global minimum variance portfolio has
the expected return greater than zero (which, in the past was a normal
state of affairs) portfolio g in (11) would be inefficient since its expected
return is zero.

Markowitz optimization is one of the most frequently used asset allo-
cation techniques. Yet, there are some important practical considerations
to bear in mind. It turns out that in practice it is much more difficult
to precisely forecast expected returns than covariance matrix. In addition,
standard Markowitz optimization solutions are not robust with respect to
changes in expected return estimation (see [4]). In this respect, using the
global minimum variance portfolio can help. Namely, to calculate asset
weights for this portfolio does not require estimation of the means. In fact,
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this is the only efficient portfolio for which this is the case. As a conse-
quence, global minimum variance portfolio plays an increasingly important
role in investment practice.

2.3. Some generalizations of the Markowitz problem

2.3.1. Uncertain investment horizon

Thus far we have considered a problem where investments are made for
a fixed and known time horizon (this was implicit in the formulation).
Suppose we are mean–variance optimizers but are not sure when we should
liquidate our portfolio. Should this exit-time uncertainty worry us, i.e.,
should we be making different investment decisions with and without such
uncertainty? This problem was analyzed in [3].

The authors consider two cases. The first is the so-called independent
exit time. There, an investor can exit at a random time but the time of exit
does not depend on the portfolio performance. For example, you might sell
off your portfolio because you need money to make the down payment on
a house or to pay a medical bill. In that case, one can show that under
rather general circumstances the optimal portfolio construction can be done
by ignoring the exit time uncertainty. In particular, portfolios which are
optimal under fixed exit time are optimal under independent stochastic exit
time and vice versa.

A very different situation occurs when portfolio exit is dictated by port-
folio performance. For example, suppose an investor has a simple stop–loss
strategy where she liquidates her portfolio after one year if its value at that
time falls by more than, e.g., 15 percent of the original level. Otherwise
the investor keeps it for another year and then sells her positions. The
authors demonstrate that in that case optimal portfolio heavily depends
on the structure of the exit time, i.e., on the exit-time policy. Importantly,
portfolios efficient under fixed exit time could be inefficient in case of a
stop–loss strategy and vice versa.

2.3.2. Portfolio optimization constraints

Another class of generalizations of the Markowitz problem consists of im-
posing additional constraints (see [4]). A rather common situation in prac-
tice is the so-called prohibition of short sales. It refers to the requirement
that all portfolio weights are non-negative, i.e., that w ≥ 0. In some coun-
tries such as Serbia, this constraint is imposed on all investors by regulators.
Investors are not allowed to borrow an asset from their broker and sell it—
thus acquiring a negative amount of a particular asset—only to repurchase
it back later to return it to the broker. This is meant by “selling a security
short”. Even in countries where short selling is not generally prohibited
(e.g., in the US), some types of institutions are prohibited in engaging in
it (e.g., investment and pension funds).

Given that the total weights need to sum up to one, no-short-selling
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constraint effectively requires that each portfolio weight satisfies inequality

0 ≤ w ≤ 1. (16)

Sometimes regulators or principals can impose further restrictions on the
feasible set of portfolio weights. For example, there could be a lower and/or
an upper limit of, e.g., αi and ᾱi percent, respectively, for investment
in particular asset i. In that case, the individual asset constraints are
αi ≤ wi ≤ ᾱi, where αi, ᾱi ∈ [0, 1]. We illustrate the effects of such con-
strained on an efficient frontier through an example in Figure 2. Similarly
to the case of unconstrained optimizations, we denote these fractions by wi
for i ∈ {1, 2, . . . , N}, where N ∈ N is the number of assets in the admissi-
ble investment universe. Alternatively, there could be restrictions on asset
classes or investment styles and strategies (say, no more than 10 percent
investment in stocks belonging to the financial sector). While all these con-
straints make closed-form solution infeasible, it is still a typical quadratic
optimization problem which is numerically easy to perform by contempo-
rary solvers. A somewhat more challenging issue is to impose the so-called
round lot constraints. In practice, investors do not purchase a fractional
number of shares (this would be, generally speaking, implied by the opti-
mization problems we have considered thus far). Instead, they purchase
shares in round lots, i.e., in groups of 100 shares. An interesting practical
problem is how to perform portfolio optimization where the output of the
optimization is a certain number of round lots for each stock in which we
want to invest (this can be combined by previously mentioned constraints).
The solution involves nonlinear integer programming (see [4]).

2.3.3. Alternative risk measures

Thus far we have considered as portfolio optimization objective to mini-
mize variance or, equivalently, standard deviation of portfolio returns. One
problem with an objective function based on portfolio variance is that it is
symmetric, i.e., upside and downside returns (relative to the expected re-
turn) are equally contributing to market risk. On the other hand, investors
typically see no problem with making more money than expected and con-
sider as risk only the downside risk, i.e., making less money than expected.
There are many measures of downside risk we can consider. Markowitz [2]
himself mentions, for example, semi-variance. This measure is calculated
similarly to the portfolio variance, however it takes into the account only
returns below the mean.

Other types of downside risk measures that can be used in portfolio
optimization are so-called quantile measures such as value at risk (VaR)
and conditional value at risk (CVaR). For a given confidence level 1 − α
where α is a small fraction (e.g., 5 percent), a one-day VaR is defined as
the loss that would be exceeded on any given day with probability of not
more than α. To illustrate this point, supposed we have calculated that the
5-percent VaR over one-day investment horizon is 7 percent. This means
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Figure 2: Constrained mean–variance optimization with risky assets. An ex-
ample of a constrained Markowitz portfolio optimization for a hypothetical case of three
risky assets introduced in Figure 1. Unconstrained portfolio optimization results pre-
sented above are included as a benchmark. For consistency, we follow the same notation
and illustration conventions. The constraints applied in this example are: (a) no short
selling is allowed, and (b) none of the asset classes is allowed to have portfolio weight
greater than 50%. For the constrained optimization, the global minimum variance portfo-
lio (efficient frontier) is represented by a purple circle (solid black line). The key takeaway
is that portfolio constraints have a significant impact on the efficient frontier, by shrink-
ing and bending it towards less attractive risk–return ratios. This is expected, due to a
constrained (i.e., more limited) investment opportunity set.

that, for our portfolio, realizations leading to losses of more than 7 percent
would occur with probability of 5 percent. In other words, in a sample of
100 consecutive trading days we can expect to see around 5 times losses
higher than 7 percent. CVaR answers a natural follow-up question: How
big of a loss we can expect to have in a given trading day provided that
the loss is higher than VaR.

From the asset management point of view a natural generalization of
the Markowitz problem is to maximize the expected portfolio return and,
at the same time, try to minimize a quantile risk measure such as VaR or
CVaR. In [5], [6], [7] the authors develop a way to map the problem of
mean-CVaR optimization into an equivalent linear programming problem.
As a by-product, their approach provides near-optimal mean-VaR portfolios
when VaR is measured using the so-called historical simulation technique,
i.e., estimating the corresponding quantile of the empirical portfolio return
distribution. There are more accurate VaR estimation methods than the
historical VaR. One very frequently used model of VaR estimation is a
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univariate VaR with conditional Student’s t-distribution and volatility es-
timation based on generalized autoregressive conditional heteroskedasticity
model, e.g., GARCH(1,1). Having higher VaR estimation accuracy comes
at a price if we want to find mean-VaR optimal portfolios. This problem
cannot be solved using linear programming or standard convex optimiza-
tion methods. Instead, [8] employ a evolutionary optimization algorithm
to address that problem.

2.3.4. Regulatory perspective

Another important generalization stems from financial regulation require-
ments. Namely, regulated financial institutions such as banks and insurance
companies need to keep certain level of capital called regulatory capital.
The level of this safety buffer depends on the portfolio of securities that
the institution holds. This invites a question: How to optimal trade off
expected return on investment portfolio and the corresponding cost of reg-
ulatory capital. In case of Basel 2.5, which provides a framework for market
risk management in the banking sector, the pioneering work on this topic
was done in [9]. Again, an evolutionary optimization is employed in order
to construct mean-regulatory capital efficient frontier.

2.4. Efficient frontier in the presence of a risk-free asset

So far we have considered only portfolio optimization using risky assets.
Another type of generalization is to stay within the confines of the stan-
dard Markowitz setup but add another type of asset into consideration.
Namely, suppose that in addition to risky assets (stocks) there is, also, a
riskless asset. It has expected return equal to rf and variance equal to zero.
A portfolio consisting of hundred percent invested in riskless asset is an ef-
ficient portfolio. This is now the new portfolio with global minimum risk.
Consider efficient portfolio consisting only of risky assets when a riskless
asset is available. It it obtained by maximizing the so-called Sharpe ratio:

max
w

µp − rf
σp

,

s.t. wᵀ · 1 = 1.

(17)

Sharpe ratio tells us how much premium investors demand with respect to
the riskless rate, for each unit of additional risk they are willing to take.
The optimization problem (17) simply states that, in the presence of a
riskless asset, risky portfolio is optimal if its Sharpe ratio is maximal. Let
us denote the standard deviation of this portfolio solving (17) with σs and
its expected return with µs. Then, in a risk–return space, in the presence
of a riskless asset two efficient portfolios are (0, rr) and (σs, µs). The first
one consists only of the riskless asset, while the second one comprises only
risky assets. All other efficient portfolios can in this case be obtained as a
linear combinations of these two efficient portfolios.
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Consider a portfolio which has a fraction of money α invested into the
risky portfolio rs and 1 − α invested into the riskless asset rf . Portfolio
return, expected return and variance would in this case, respectively, be
equal to:

rp = rf + α(rs − rf ),

µp = rf + α(µs − rf ),

σp = ασs.

(18)

From this follows that the fraction of money invested in risky asset is simply
the ratio between portfolio volatility and volatility of the maximum Sharpe
ratio portfolio, i.e., α = σp/σs. If we plug this result back into the second
equation above, we obtain that

µp = rf +
µs − rf
σs

σp. (19)

Thus, the risk premium on an optimal portfolio is equal to the maximum
Sharpe ratio times the risk of the portfolio. If we assume that all investors
have identical preferences and evaluate risks and returns in the same way
(a tall order, admittedly) and if we, furthermore, assume that all investors
invest in the entire universe of risky assets, then portfolio s is the market
portfolio. It is a portfolio of risky assets weighted by their relative market
capitalization. In that case we denote rs = rm and the above equation is
called the Capital Market Line (CML),

µp = rf +
µm − rf
σm

σp. (20)

In summary, if Markowitz optimization is a reasonable, rational thing for
all investors to do and if all of them have the same information and think
alike, one cannot do better than invest in a portfolio in which a fraction of
the money is invested into the riskless asset and the rest into the market
portfolio. In that case, all investments lie either on the CML or below it
but cannot be above it by the very construction. The reason for this lies
in the fact that the CML, by definition, provides the best possible trade-
off between risk and return. Under these conditions passive investment—
following a market index instead of attempting to beat the market—is the
most sensible strategy. An example is provided in Figure 3.

3. Expected utility optimization in discrete time

Consider two investments in the presence of uncertainty. Today is time t.
Investment A promises to pay 5 euros in both states of the world at time
t+1, while investment B promises to pay 9 euros if state 1 materializes and
1 euros if state 2 is realized at time t + 1. Which of the two investments
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Figure 3: Mean–variance optimization with risk-free asset and risky assets.
An example of a Markowitz portfolio optimization for a hypothetical case of three risky
assets introduced in Figure 1 and Figure 2. However, a risk-free asset (rf = 2%) is also
included in this case. We follow the same notation and illustration conventions as earlier.
The only constraint imposed is that the asset weights add up to one. The risk-free asset
(tangential portfolio) is represented by the orange (purple) circle. The capital market
line connects the risk-free asset and the tangential portfolio (solid black line). Along
this line segment, the Sharpe ratio is maximized. If we allow for leverage, an investor
could optimally invest also along the capital market line extension beyon the tangential
portfolio (dashed gray ray).

should we rationality choose? Suppose, for simplicity, that both states can
be realized with equal probability.

If we are risk neutral (i.e., if we do not demand risk premium for taking
risk), both investments are worth the same to us. Namely, in that case we
would evaluate them using the expected value of each investment:

E (cA) =
1

2
× 5 +

1

2
× 5 = 5,

E (cB) =
1

2
× 9 +

1

2
× 1 = 5.

On the other hand, while both investments have the same expected value,
the second one is risky while the first one has no risk at all. Thus, a risk-
averse investor would prefer the first investment to the second one. Daniel
Bernoulli proposed using the expected utility as the solution to valuing
risky investments (he actually studied gambling). This theory was later
formalized by von Neumann and Morgenstern [10].

According to the expected utility theory, when comparing investments
under uncertainty instead of the expected value we should use the expected
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utility, where utility is represented by an increasing and concave function.
Suppose that utility function is u(x) =

√
x. In that case:

E (u(cA)) =
1

2
×
√

5 +
1

2
×
√

5 =
√

5,

E (u(cB)) =
1

2
×
√

9 +
1

2
× 1 = 2.

Obviously, E (u(cA)) > E (u(cB)). Suppose that w is an investor’s wealth.
It is convenient to introduce the notion of absolute and relative risk aversion
as follows:

A(w) := −u
′′(w)

u′(w)
,

R(w) := wA(w).

(21)

Both of these functions are related to the degree of concavity of the utility
function. A more concave utility function corresponds to a more risk averse
investor. In the case of an investor with linear utility function, i.e., u(w) =
a+ bw, both the absolute and relative risk aversion coefficients are equal to
zero. Such an investor is risk neutral. On the other hand, when the utility
function is given by the natural logarithm, i.e., u(w) = log(w), it is easy to
see that the absolute risk aversion decreases in wealth, while the relative
risk aversion is a constant:

A(w) ≡ −u
′′(w)

u′(w)
=

1

w
,

R(w) ≡ −wu
′′(w)

u′(w)
= 1.

(22)

The situation is qualitatively the same in case of a power utility function

u(w) = w1−γ
1−γ , where 0 < γ < 1:

A(w) =
γ

w
,

R(w) = γ.
(23)

Thus, logarithmic and power utility belong to the class of constant relative
risk aversion (CRRA) utility functions. In order to better understand the
meaning of absolute and relative risk aversion, let us state here the following
important result:

Theorem 2 Suppose the investment opportunity set consists of a riskless
asset and a risky portfolio. An investor for whom A(w) is a decreasing
function would invest more money (in a hard currency, e.g., euros or dol-
lars) into the risky portfolio vis-a-vis the riskless asset the wealthier she
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gets. The opposite is true for an investor for whom A(w) is an increasing
function of wealth. Finally, if A(w) does not depend on wealth, investor
would keep the same amount of money invested into the risky portfolio no
matter how wealthy she gets.

What does this mean? Suppose A(w) is a decreasing function of wealth
such as log utility. In that case, when we are dirt-poor we optimally invest
smaller amount of money into the risky assets than would be the case if we
were wealthier. This intuitively makes sense. On the other hand, if A(w) is
constant, then we would optimally invest the same amount of money into
stocks whether we have ten or million euros at our disposal. This is not
reasonable, of course. Even worse is the situation when A(w) increases in
wealth. In case of R(w) the following statement is true:

Theorem 3 Suppose that the investment opportunity set consists of a risk-
less asset and a risky portfolio. An investor for whom R(w) is a decreasing
function of wealth would invest a higher fraction of her money into the
risky portfolio vis-a-vis the riskless asset the wealthier she gets. The oppo-
site would be true for an investor for whom R(w) is an increasing function
of wealth. Finally, if R(w) does not depend on wealth, investor would keep
the same fraction of money invested into the risky portfolio no matter how
wealthy she gets.

These theorems are called Fundamental Theorems of Portfolio Manage-
ment. Note that this implies that a log or power utility investor would
optimally keep the same fraction of money invested into the risky portfolio
no matter how wealthy she is.

It turns out that the Markowitz optimization problem can be rational-
ized (i.e., presented as a result of an expected utility optimization) for any
concave utility function provided that asset returns are normal or for any
asset return distribution with finite first and second moments provided that
the utility function is quadratic, i.e., it has the form:

u(w) = w − a

2
w2,

where w < 1/a (see [11]). Unfortunately, these conditions do not bode well
for the rationalization of the Markowitz approach. Namely, asset returns
are well-known to pose tails fatter than normal (kurtosis in excess of 10
is not uncommon). On the other hand, quadratic utility specified above
implies that both A(w) and R(w) are increasing in wealth, which is not
realistic. Nevertheless, Markowitz approach and its various generalizations
are dominant in asset management practice.

In the rest of the article we consider portfolio optimization via expected
utility maximization.
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3.1. Single-period expected utility optimization

Suppose there are two assets at our disposal: a risky asset (which can be a
stock or a portfolio of stocks) and a riskless asset. Price of the risky asset
at time t is denoted as st. For simplicity, single-period gross return on the
risky asset has two possible outcomes:

st+1

st
=

{
u with probability p,

d with probability 1− p. (24)

The gross return on riskless asset is R = 1+rf . Importantly, the parameters
of the system satisfy the following inequalities d < R < u. This condition
ensures that risky asset (let us call it a stock) performs better than the
riskless asset in the good state and worse than the riskless asset in the
bad state of the world. In the absence of this condition market would not
support the existence of one of these securities. Namely, if R < d < u it
would never pay to invest in the riskless asset. The opposite is true in case
when d < u < R.

This simple model is called the binomial model of asset prices. Let the
investor’s wealth at time t be xt. Suppose, further, that the investor has
log utility. The question is: given her initial wealth and attitude towards
risk, what is the optimal fraction of money she would invest into the risky
asset? Let us denote that fraction as wt. Given wealth at time t and the
investment strategy wt, portfolio wealth at time t+ 1 is given by:

xt+1 =

{
xt(R+ wt(u−R)) with probability p,

xt(R+ wt(d−R)) with probability 1− p. (25)

This expression is intuitive. Namely, portfolio wealth would grow by the
factor of R provided that all our money is invested into the riskless asset.
The difference (positive or negative, depending on whether the upper or
the lower state is realized at time t + 1) is determined by the fraction of
wealth invested into the risky asset times how much extra return we make
by making such investment. Let excess returns on stock be ũ = u − R,
d̃ = d − R and probability of down move q = 1 − p. Expected utility at
time t, then, reads:

Et (u(xt+1)) := Et (log(xt+1))

= log(xt) + p log(R+ wtũ) + q log(R+ wtd̃).
(26)

Next we find the first order condition with respect to wt and set it equal
to zero:

p ũ

R+ wtũ
+

q d̃

R+ wtd̃
= 0.

Note that the initial wealth cancels out. Thus, the optimal fraction invested
into the risky asset should not depend on accumulated wealth at time t.
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This is consistent with the result stated above since R(w) = 1 is a constant
in case of the log utility.

The first order equation is linear in wt. Its solution reads:

ŵt = − R

ũ d̃
(pũ+ qd̃),

Et (u(x̂t+1)) = log(xt) + p log(R+ ŵtũ) + q log(R+ ŵtd̃)

=: log(xt) + k.

(27)

Note that the term in bracket in the expression for the optimal weight
is expected excess return on the stock with respect to the riskless asset.
Given our definitions, d̃ < 0 and ũ > 0. Thus, the sign of the optimal
fraction invested into the risky asset is positive provided that a positive
risk premium on that asset is paid and vice versa. This is intuitive, of
course. We see, also, that the optimal expected utility function of the
portfolio wealth at time t + 1, with expectation calculated at time t, is
equal to the utility function of wealth at time t plus a constant term. This
insight is important when we want to solve a multi-period problem.

3.2. Dynamic portfolio optimization in discrete time

Now we consider dynamic portfolio optimization problem which generalizes
the example from the previous subsection. Again, we have a stock and a
riskless asset. While now there are T trading periods, all the rest stays the
same. Namely, risky asset in each period evolves according to (24), investor
has log utility, and per-period gross return on riskless asset is R.

We solve the problem backwards in time, using Dynamic Programming
technique. Suppose we are at time t = T − 1 and want to maximize the
expected utility of the final wealth. We assume that the wealth at that
time is xT−1 and that it is known. Thus, we maximize:

ET−1 (u(xT )) := ET−1 (log(xT ))

= log(xT−1) + p log(R+ wT−1ũ) + q log(R+ wT−1d̃).
(28)

with respect to wT−1. Clearly, this problem does not differ from (26) except
that we need to identify xt → xT−1 and wt → wT−1. Using the same
procedure as before, we obtain that:

ŵT−1 = − R

ũ d̃
(pũ+ qd̃),

ET−1 (u(x̂T )) = log(xT−1) + p log(R+ ŵT−1ũ) + q log(R+ ŵT−1d̃)

=: log(xT−1) + k =: V (xT−1).

(29)

In the last step we have introduced the value function, i.e., optimal value
of the expected utility calculated at time t = T −1. It depends on the state
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variable which is, in this case, portfolio wealth at time t = T − 1. Next we
can go one step backwards in time, to t = T − 2. In that case we need to
maximize:

ET−2 (V (xT )) := ET−2 (log(xT−1)) + k

= log(xT−2) + p log(R+ wT−2ũ) + q log(R+ wT−2d̃) + k.
(30)

Solving for the optimal fraction of wealth and plugging that expression into
the objective function we obtain that:

ŵT−2 = − R

ũ d̃
(pũ+ qd̃) = ŵT−1 ≡ ŵ,

ET−2 (u(x̂T−1)) = log(xT−2) + p log(R+ ŵũ) + q log(R+ ŵd̃) + k

= log(xT−2) + 2 k =: V (xT−2).

(31)

It is easy to check, continuing backwards in time, that the optimal holdings
and the value function at time t are given by:

ŵt = − R

ũ d̃
(pũ+ qd̃) =: ŵ

V (xt) = log(xt) + k (T − t),
where k = p log(R+ ŵũ) + q log(R+ ŵd̃).

(32)

In summary, when an investor has a log utility function, in a stationary
economy (i.e., when parameters of the model do not change over time),
her optimal fraction invested into the risky asset would stay constant. The
value function at time t is equal to the utility function at that time plus a
linear function of time. When t = T the value function becomes is equal
to the utility function.

4. Portfolio optimization in continuous time

In this section we briefly consider portfolio optimization problem when both
risky and riskless asset are traded continuously in time.

4.1. Stochastic processes in continuous time

Consider an economy in which there exist a riskless and a risky asset which
can be traded continuously in time. For simplicity, we assume that there are
no transaction costs. Riskless asset has continuously compounded interest
rate r. Thus, return on the riskless asset in the period (t, t + dt) is given
by the following ordinary differential equation:

db(t)

b(t)
= r dt,

b(0) = b0.

(33)
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Since there is no risk, this is just an ordinary differential equation. Its
solution is b(t) = b0e

rt. In other words, the riskless account grows expo-
nentially in time due to continuously paid interest on interest. The rate of
growth is the interest rate r.

Consider now return on a stock in the same infinitesimal interval of
time. We model it using Geometric Brownian Motion (GBM) process, as
follows:

ds(t)

s(t)
= µdt+ σdz(t),

s(0) = s0.

(34)

The first part on the right hand side is a deterministic drift term. The
second part is stochastic. Namely, z(t) is assumed to be a Wiener process,
which satisfies the following properties:

(a) z(t) is a continuous function of time t,

(b) Increments ∆z(t) = z(t + ∆t) − z(t) are independent for different t
and ∆t > 0,

(c) z(t) are normally distributed with mean 0 and variance t,

(d) z(0) = 0.

While sample paths for the Wiener process are continuous, z(t) is not
differentiable. This can be seen, e.g., by considering the following limit
when ∆t→ 0:

V
(
z(t+ ∆t)− z(t)

∆t

)
=

∆t

∆t2
=

1

∆t
→∞.

Since this is true for any t, z(t) is a nowhere differentiable function. In that
sense, differential equation (34) cannot be properly defined using the stan-
dard calculus. To tackle this process (and others like it) we need stochastic
calculus instead. One version of it is the Itô calculus. Formally, stochastic
processes of this type are defined in integral form only :

s(t) = s0 +

∫ t

0
µs(u) du+

∫ t

0
σs(u) dz(u).

Here, the first integral is the standard Riemann integral (the integrand is a
continuous function of time) while the second integral is the stochastic or Itô
integral (see [12]). Instead of using the integral form, it is both customary
and functionally equivalent to use the differential form (34) but to redefine
what we mean by a differential. Namely, in calculating differentials—often
called Itô differentials—of a function of both t and z, we need to calculate
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the second order differential and not the first order one as is customary in
regular calculus. In addition, the following mnemonic rules are imposed:

(dz)2 = dt,

dz dt = 0,

(dt)2 = 0.

(35)

Thus, we drop from the second order differential terms proportional to
dz dt and (dt)2 but keep the terms proportional to (dz)2 and replace that
construct with (dz)2 → dt. Note that E

[
(dz)2

]
= V(dz) = dt. While

this does not constitute the proof of the above rule, it demonstrates its
plausibility. The above stochastic differentiation rules are often referred
to as Itô’s Lemma. Of course, as stressed earlier, Itô’s Lemma is properly
formulated in an integral form.

Let us now calculate Itô differential of the following expression:

s(t) = s0 e

(
µ−σ2

2

)
t
eσz(t). (36)

We find first order partial derivatives of s(t) with respect to t and z as well
as the second order partial derivative with respect to z:

∂s

∂t
=

(
µ− σ2

2

)
s(t),

∂s

∂z
=σs(t),

∂2s

∂z2
=σ2s(t).

(37)

Therefore, the second order differential of s(t) is given by:

ds =
∂s

∂t
dt+

∂s

∂z
dz +

1

2

∂2s

∂z2
(dz)2 + · · · .

The omitted terms denoted with dots are those second-order terms propor-
tional to dz dt and (dt)2 which we have agreed to drop. Using the first rule
in (35) we obtain the following:

ds =
∂s

∂t
dt+

∂s

∂z
dz +

1

2

∂2s

∂z2
dt

=

(
µ− σ2

2

)
s(t) dt+ σs(t) dz(t) +

1

2
σ2s(t) dt

=µs(t) dt+ σs(t) dz(t).

(38)

Therefore, we have demonstrated that the expression (36) is the solution
to the stochastic differential equation (34).
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One can generalize this result by introducing an Itô process {x(t), t ≥ 0}
in the form:

x(t) = x0 +

∫ t

0
µ(u, x(u)) du+

∫ t

0
σ(u, x(u)) dz(u). (39)

Here, functions µ(u, x(u)) and σ(u, x(u)) represent drift and diffusion, re-
spectively. Generally, they depend on the previous realizations of the pro-
cess {x(t), t ≥ 0}. That means that these values are considered known
when dz(u) is drawn. Such processes are called adapted processes with re-
spect to the filtration generated by the Wiener process {z(t), t ≥ 0}. GBM
is a special case of the Itô process with drift and diffusion terms which are
linear in x. Wiener process itself is a special case of the Itô process with
vanishing drift and diffusion equal to 1. In the absence of a drift, for any
adapted process σ(u, x(u)), x(·) satisfies:

x(t) = x0 +

∫ t

0
σ(u, x(u)) dz(u),

E0 (x(t)) = x0 + E0

(∫ t

0
σ(u, x(u)) dz(u)

)
= x0,

V0 (x(t)) =

∫ t

0
σ2(u, x(u)) du.

(40)

In the second line we use the fact that σ is adapted process and the expec-
tation of future Wiener increments is zero. As a result, the expectation at
time zero of a driftless Itô process is equal to the initial value of the process.
More generally, it is easy to see that driftless Itô process is a martingale.
That means that the best prediction of its value at time t + τ is its value
at time t (for any t and τ > 0):

Et(x(t+ τ)) = x0 + Et
(∫ t

0
σ(u, x(u)) dz(u)

)

+ Et
(∫ t+τ

t
σ(u, x(u)) dz(u)

)

= x0 +

∫ t

0
σ(u, x(u)) dz(u) + 0 = x(t).

(41)

When the expectation in the first line is calculated, we know all of the
realizations of the Itô process up to time t. Thus, the expectation is equal
to the realization of the process itself. Expectation in the second line is
zero for the same reasons as before. Finally, consider the third equation in
(40). This is so-called isometric property of the Itô integral. It stems from
the fact that Wiener increments have zero mean and variance equal to dt
and that they are independent (see [12]).
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In order to complete this section let us briefly consider differential form
of the general Itô process defined as

dx = µ(t, x(t)) dt+ σ(t, x(t)) dz.

Itô’s Lemma would now amount to the following mnemonic rules:

(dx)2 =σ(t, x(t))2 dt,

dx dt = 0,

(dt)2 = 0.

(42)

In the next subsection we explain how one can determine an optimal port-
folio strategy in continuous time. Our approach follows the pioneering work
of Robert Merton (see articles in [13]).

4.2. Hamilton–Jacobi–Bellman (HJB) equation

Consider a portfolio consisting of a riskless asset b(t) and a risky asset
s(t) whose dynamics is specified by (33) and (34), respectively. We are
interested in the evolution of the portfolio wealth process assuming that
wealth generated during the investment process is fully reinvested. Let
w(t) be the fraction of money invested into the risky asset at time t. In
that case, return on portfolio wealth in time interval (t, t+ dt) is given by
the following expression:

dx(t)

x
= (1− w(t))

db(t)

b
+ w(t)

ds(t)

s
= (1− w(t))r dt+ w(t)(µdt+ σ dz(t))

= rdt+ w(t)(µ− r) dt+ w(t)σ dz(t),

x(0) =x0.

Using Itô’s calculus it is easy to check that:

dx = rx(t) dt+ w(t)(µ− r)x(t) dt+ w(t)σx(t) dz(t),

(dx)2 = w(t)2σ2x(t)2 dt,

dx dt = 0.

(43)

The wealth process (43) is a GBM with variable coefficients. This is the
result of the assumption that s follows a GBM and that b is deterministic.
In integral form, Itô process {x(t), t ≥ 0} can be represented as

x(t) = x0 +

∫ t

0
(r + w(u)(µ− r))x(u) du+

∫ t

0
w(u)σx(u) dz(u). (44)

The wealth process (44) depends on the trading strategy w. Suppose that
we have selected an arbitrary (not necessarily optimal) trading strategy
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{w(t), t ≥ 0} and denote the corresponding wealth process as {xw(t), t ≥
0}. Terminal investment time is t = T . At that point we consume all of
the accumulated wealth. For a given arbitrary trading strategy w utility of
terminal wealth is equal to u(xw(T )).

Suppose that wealth at time t is x. Expected utility at time t of the
terminal wealth for a given trading strategy {w(t), t ≥ 0} is given by the
expression:

J(t, x;w) = Et,x(u(xw(T ))). (45)

We assume here that w(t) has a feedback form w(t, xw(t)) for some de-
terministic function w(t, x) (see [12] for a discussion of this assumption).
With this condition in place J(t, x) is the expected value of a function of the
diffusion process xw(t). This enables us to apply Itô’s Lemma to function
J(·, ·). Consider Itô differential (here subscripts denote partial derivatives
with respect to the corresponding variables)

dJ = Jtdt+ Jxdx+
1

2
Jxx(dx)2

= Jtdt+ Jx(r + w(t)(µ− r))x(t)dt+ Jxw(t)σx(t)dz(t)

+
1

2
Jxxx

2(t)w(t)2σ2dt.

which can be, more conveniently, rewritten as

dJ =

(
Jt + (r + w(t)(µ− r)) Jx +

1

2
w(t)2x(t)2σ2Jxx

)
dt

+ w(t)σx(t)Jx dz(t).

(46)

Let us integrate both sides of (46) from t to T . On the left hand side we
obtain:

∫ T

t
dJ = J(T, xw(T ))− J(t, xw(t)) = u(xw(T ))− J(t, x).

Thus, the integral form of (46) reads:

u(xw(T ))− J(t, x) =

∫ T

t

(
Ju + (r + w(u)(µ− r))xw(u)Jx

+
1

2
w(u)2σ2xw(u)2Jxx

)
du+

∫ T

t
w(u)σxw(u)Jxdz(u).

Taking the expectation of both sides of this expression at time t, from (45)
follows that the left hand side yields zero. On the right hand side, Itô
integral term also yields zero. As a result, the following identity has to
hold for any t:
∫ T

t

(
Ju + (r + w(u)(µ− r))xw(u)Jx +

1

2
w(u)2σ2xw(u)2Jxx

)
du = 0.
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Taking first derivative of both sides with respect to t it follows that

Jt + (r + w(t)(µ− r))xw(t)Jx +
1

2
w(t)2σ2xw(t)2Jxx = 0. (47)

This is an identity that holds for an arbitrary admissible trading strategy
{w(t), t ≥ 0}. Now we formulate the rule for selecting the optimal trading
strategy. Define, first, the value function:

V (t, x) := sup
w
J(t, x;w).

The value function V (t, x) satisfies the so-called Hamilton–Jacobi–Bellman
(HJB) equation:

0 = Vt + sup
w

(
(r + w(µ− r))xVx +

1

2
w2σ2x2Vxx

)
,

V (T, x) = u(x).

(48)

In this equation we treat w as a simple variable with respect to which we
optimize. The optimal trading strategy is given by the first order condition
for (48):

ŵ = −µ− r
σ2

Vx
xVxx

. (49)

Here, it is assumed that V is the solution of the following nonlinear partial
differential equation which is obtained when in (48) we plug in the expres-
sion for optimal w (49) and introduce the notation for the market price of
risk θ := µ−r

σ :

0 = Vt + rxVx −
θ2

2

V 2
x

Vxx
,

V (T, x) = u(x).

(50)

Thus, optimal portfolio trading strategy needs to satisfy (49) provided that
we have previously solved a rather complicated nonlinear partial differential
equation (50). At terminal point in time the value function coincides with
the utility function u(x). This is the terminal condition. Note that optimal
trading strategy is equal to the Sharpe ratio of the risky asset times the
reciprocal value of the relative risk aversion of the derived utility of wealth.
It should come as no surprise that when utility function belongs to the class
of constant relative risk aversion functions, the optimal trading strategy is
a constant.
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4.3. Examples of portfolio optimization in continuous time

4.3.1. Logarithmic utility

Consider first the case when u(x) = log(x). Recall that in a discrete-time
setting, the value function is additive-separable. Thus, our ansatz takes the
following form:

V (t, x) = log(x) + b(t).

From the terminal condition we know that V (T, x) = log(x). This implies
that the function b(t) has to satisfy the terminal condition b(T ) = 0. The
shape of b(t) is determined by plugging the proposed solution into the HJB
equation (50). Towards that end, the relevant partial derivatives of the
value function read:

Vt = b′(t),

Vx =
1

x
,

Vxx = − 1

x2
.

Substituting these expressions into (50) we obtain that:

0 = Vt + rxVx −
θ2

2

V 2
x

Vxx
= b′(t) + r +

θ2

2
,

b(T ) = 0.

(51)

The solution to this equation is b(t) = (r + θ2

2 )(T − t). The corresponding

optimal value function then reads V (t, x) = log(x) + (r + θ2

2 )(T − t). To
obtain the optimal trading strategy ŵ we need to substitute the optimal
value function into the expression (49). We obtain:

ŵ(t) =
µ− r
σ2

.

Thus, in case of an investor with logarithmic utility, optimal fraction of risky
asset is equal to the Sharpe ratio of the risky asset. Since this quantity is a
constant, it follows that the investor keeps a constant fraction of her money
invested in the risky asset.

4.3.2. Power utility

Consider now the case when u(x) = x1−γ
1−γ , where 0 < γ < 1 and propose,

this time, a multiplicative rather than additive shape of the value function
(this can again be motivated by considering the discrete case first):

V (t, x) =
b(t)

1− γ x
1−γ .
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In that case, the relevant partial derivatives read:

Vt =
b′(t)
1− γ x

1−γ ,

Vx = b(t)x−γ ,

Vxx = −γb(t)x−γ−1.

From this result it follows that:

0 = Vt + rxVx −
θ2

2

V 2
x

Vxx

=
b′(t)
1− γ x

1−γ + rb(t)x1−γ +
θ2

2γ

x−2γ

x−γ−1
b(t),

b′(t)
1− γ +

(
r +

θ2

2γ

)
b(t) = 0,

b(T ) = 1.

(52)

This differential equation can be rewritten as b′(t) + ab(t) = 0, with the
terminal condition stating that b(T ) = 1. The solution is given by the

expression b(t) = ea(T−t) and, therefore, the optimal value function for a
power utility investor reads:

V (t, x) =
ea(T−t)

1− γ x1−γ .

Finally, the optimal fraction of money invested into risky assets is given by
(49):

ŵ(t) =
µ− r
γσ2

.

Note that, again, the optimal fraction of money invested into the risky
asset does not change over time. It is equal to the product of the Sharpe
ratio of the risky asset and the reciprocal value of the relative degree of risk
aversion. Since log-utility implies a higher degree of relative risk aversion
than power utility with 0 < γ < 1, a rational investor would hold a smaller
fraction of her portfolio in risky asset the more risk averse she is.

5. Conclusions

Financial portfolio optimization is an active field of investigation by re-
searchers and practitioners alike. In this paper we provide a review of
portfolio optimization techniques in discrete and continuous trading time.
We discuss some of the salient features of optimal portfolios and derive
closed-form solutions for several benchmark problems.
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ABSTRACT 

 
The exhaustive experimental investigations allowed us to understand 

spontaneous self-organization of soliton-tweezers in pure water naturally 

containing suspended nanobubbles. The laser beam propagation modifies the 

medium, but due to feedback mechanisms beam is itself altered in a self-

organized way generating soliton. In soft matter like body water, suspended 

nanoparticles are aspirated inside the beam if their refractive index is larger than 

the background one. In opposite case they are expelled making again soliton 

self-focusing, thus, compensating defocusing effects. The result is a 

spontaneously self-collimated  soliton-tweezer with a conserved profile as 

demonstrated by experiments and numerical simulations of a novel complex 

intensity equation. Coefficients multiplying this equation terms are determined 

by experimental measurements allowing the predictability important for 

noninvasive medical applications in inactivation of viruses, bacteria, and cancer 

cells.   
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1. Introduction 

 

Biomedia like blood, myosin, kinesin, ribosomes, liposomes, and 

varieties of living cells suspended in body water can be manipulated, 

tweezed, and controlled using laser beams and pulses[1-7]. The laser 

beam propagates through the nonlinear medium and alter it. 

Simultaneously, the changed medium acts by feedback mechanisms to 

this laser light modifying it in turn. Therefore, the laser light is self-

controlled by light through the interaction with nonlinear medium [7-14]. 

The laser stability and precision are of crucial importance for 

nondestructive medical applications, e.g. photobiomodulation using these 

feedback mechanisms [6, 15,16]. In order to improve this indispensable 

dynamical stability, the best way is to leave nature to act by self-

organization of solitons localized in space and in time [17,18]. The laser 

beam becomes soliton whenever antagonist effects, i.e., beam focusing 

and defocusing are balanced [19-21]. In any medium, including vacuum, 

laser beam is diffracting. In rigid guides beams are confined in the region 

with higher optical index of refraction. In contrast, the particularity of the 

propagation in soft matter is that the easily moving fluids adapt their 

density distribution in such a way that the beams always propagate 

through the highest index of refraction. Following 2018 Nobel Prize 

winner Ashkin, the tweezing laser beam collects around its center micro- 

and nanoparticles with index of refraction np higher than the background 

medium one (nb), i.e., positively polarized particles [1-4,22,23]. 

Consequently, the beam is always self-focuses. However, in opposite 

case, when the refractive index of nanoparticles is lower than the 

background one (np<nb), the negatively polarized nanoparticles are 

expelled from the beam that focalizes too, propagating again through 

higher index of refraction. Therefore, such a redistribution of 

nanoparticles density following Gaussian laser intensity induces always 

the nonlinear beam self-focusing [24-28]. Taking into account that the 

same nonlinear nanoparticle density distribution causes also defocusing 

effects, it becomes plausible that self-focusing effects compensate 

defocusing ones in a self-organized way [29]. As a consequence, the 

beam is self-collimated and becomes soliton-tweezer with identical 

widths following two transverse coordinates x and y corresponding to a 

unique transverse coordinate 𝑟⊥ = √𝑥2 + 𝑦2   [19-21,30]. Using paraxial 

approximation and slowly varying envelop, A(r), the dynamics of electric 

field, E=A(r)exp(ik0n0z) can be described by two transverse dimensions 

(2D) nonlinear Schrödinger equation (NLS) 

i ∂E/ ∂z + γ∇⊥
2 E + ηE + (σ|I| − ν|I|²)E = 0    (1) 
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whereI=E
2 

is the complex intensity and the transverse Laplasian reads 

∇⊥
2 =

𝜕2𝐸

𝜕𝑥2 +
𝜕2𝐸

𝜕𝑦2. The only imaginary term corresponds to the field 

propagation. The unavoidable diffraction is given by the second one. The 

third term is linear. The nonlinear self-focusing is given by the fourth 

term. The higher order negative nonlinearity is necessary in order to 

avoid the catastrophic collapse [19-21]. Coefficients in front of terms 

have to be determined from experiment in order to connect it directly to 

the theory [31].  For this purpose, we realize the laser beam propagation 

in pure water. 

 

 
2. Experiments of soliton-tweezers self-organizationin water suspension 

of nanoparticles:Equation connecting theory with experiments 

 

Taking into account that the total body water volume estimated from 

simple anthropometric measurements is about 70%, the safety of medical 

applications of lasers depends on good knowledge of beam propagation 

in water [32]. The challenge is to investigate the possibility of 

spontaneous self-generation of soliton-tweezers in pure water. Following 

exhaustive literature, the pure water contains naturally gas microbubbles 

and nanobubbles [33-38]. For instance, collapsing microbubbles may 

generate free-radicals in body water [39]. It is reported recently that drug 

delivery plasmonic nanobubbles rapidly detect and destroy drug-resistant 

tumor [40]. It seems that nanobubbles of about 50 to 100 nm are the most 

stable [33-38]. Taking into account that the water has the index of 

refraction nb=1.33 and air nanobubbles np=1, we investigate the case of 

negative polarizability of nanoparticles (nb>np). In order to study soliton 

tweezing gas particles in body water, e.g., blood transporting oxygen and 

carbon dioxide, the prerequisite are theoretical, numerical and 

experimental synergetic investigations of the pure water. 

We investigate experimentally the propagation of laser beam in the 20 

cm long optically clear u-cuvette filled by pure water [41]. A powerful 

near infrared Mira 900 laser in continuous regime with wavelength 

λ0=727 nm is used as the light source. The laser beam is spontaneously 

self-structured and self-collimated propagating in water suspension of 

nanobubbles as can be seen in Figure 1a. Indeed, the laser beam has the 

same width along of the cuvette. The beam width conservation implies 

the zero wave front curvature, as a main property of Schrödinger solitons 

[19-21]. Therefore, this beam is a 2D spatial soliton that is self-organized 

due to the balance between the self-focusing tweezing effects due to 

redistribution of nanobubbles, from the one side, and self-defocusing 

effects, from the other side [29]. The experiment to establish optical 

properties of  the investigated nanosuspension consists in measuring with 

precision the beam output intensity as a function of gradually increasing 
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input one, charted in Figure 1e as dots with uncertainty bars [31]. The 

third order polynomial fit of the distribution of these dots furnishes the 

numerical factors in front of linear and quadratic focusing terms (x and 

x
2
) and cubic defocusing term (x

3
) in insert of Figure 1e giving 

respectively values of  linear coefficient η, self-focusing coefficient σ, 

and self-defocusing coefficient ν of Eq.(1). The NLS describes the 

evolution of laser complex electric field E. However, in experiments is 

always measured the increase of laser complex intensity 

I=E
2
=A

2
(r)exp(i2k0n0z). Therefore, in order to obtain right description of 

experiment in paraxial approximation it is necessary to multiply Eq.(1) 

by complex electric field E  

i ∂I/ ∂z + γ∇⊥
2 I + ηI + (σ|I| − ν|I|²)I = 0   (2)   

obtaining a novel soliton-tweezer complex intensity equation 

(STCIE).This synergetic equation directly connects the measured 

quantities with 

e

 

Figure 1a Self-collimated powerful red soliton-tweezer propagating through pure 

water in 20 cm cuvette. e Dots (with uncertainty bars) represent the measured  soliton-

tweezer output for various input intensities. The third order polynomial fit allows to 

obtain numerical values for coefficients in Eq.(2). Numerical propagations for z=1000 

(c)  and z=20000 steps (d) of this STCIE give identical soliton-tweezer profiles in very 

good agreement with the experimental one (b). 
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the theory. Indeed, the numerical factors in front of linear (x), quadratic 

(x
2
), and cubic (x

3
) terms in insert of Figure 1egive value of coefficients 

η, σ, and ν of linear (I), quadratic (|I|I), and cubic (|I|2I) intensity terms 

of Eq. 2. The soliton-tweezers self-trapped propagation is limited by the 

cuvette length, but can be extended by numerical propagation of STCIE. 

Indeed, the camera positioned in the output of u-cuvette captured the 

soliton-tweezer profile (Figure 1b) that looks similar to profiles obtained 

by z=1000 (Fig. 1c) and z=20000 steps (Fig. 1d)  numerical propagation 

of synergetic STCIE with coefficients from insert of Figure 1e. 

Obviously, the beam intensity profile can be captured only in output of 

20 cm u-cuvette, in order to visualize it in the middle, a twice shorter u-

cuvette is irradiate by the identical laser beam under identical conditions. 

The laser beam is spontaneously self-collimated in 10 cm u-cuvette too 

(see Figure 2a). The intensity profiles after 10 cm and 20 cm 

propagations in pure water naturally containing suspension of 

nanobubbles are identical (compare Figures 1b and 2b). The third order  

a c
b d eca

f

Figure 2a Self-organized propagation of soliton-tweezer in 10 cm cuvette. b The output 

profile resemble to beam profiles after self-trapped numerical propagation of z=600 (c) 

and z=20000 steps (d). e Diffracting low intensity beam profile. f Measured  soliton-

tweezer output intensities for increasing input ones represented by dots. The full line 

corresponds to third order polynomial fit furnishing numerical values for coefficients in 

STCIE. The color scale is common for all cuvettes. 

polynomial fit, in insert of Figure 2f, gives different numerical  values  

for coefficients η, σ, and ν, from those in Figure 1e. However, the 
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numerical propagation of Eq. 2 with new values of coefficients, after 

z=600 (Figure 2c) and z=20000 steps (Figure 2d) give intensity profiles 

identical to those of Figures 1c and 1d and very similar to experimental 

profiles. Therefore, the feasibility of soliton-tweezers in the pure water is 

confirmed. In contrast, the low intensity beam is diffracting as in Figure 

2e. 

For security reasons, it is desirable to nondestructively tweeze and 

manipulate body water nanoparticles using laser of very low intensity, 

i.e., low power density. Consequently, in order to demonstrate the 

soliton-tweezer feasibility even for three order of magnitude lower 

intensities, a weak continuous green laser beam with wavelength λ0=532 

nm is propagated through the pure water in 20 cm cuvette.  From the 

beam lateral view in Figure 3a can be concluded that the width of the 

beam profile (Figure 3b) is maintained constant through the cuvette. In 

order to find equivalent of beam profile in the center of 20 cm u-cuvette, 

the same green beam is now propagated through the 10 cm u-cuvette. It 

becomes self-collimated due to the soliton-tweezer self-trapping too (see 

Figure 4a). 

e

a b c d

Figure 3a The propagation of a weak  green laser beam through the same 20 cm cuvette 

becomes self-collimated due to the interaction with nanobubbles suspended in water. b 

Its output profile coincide with those obtained numerically after z=800 (c) and z=20000 

steps(d). e The curve that fit experimental data corresponds to a third order polynomial 

with coefficients that are integrated in Eq.(2) allowing the soliton-tweezer numerical 

propagation. 
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 Therefore, this beam keeps always the same profile as in Figure 4b. 

This output profile is identical to the output one of 20 cm u-cuvette in 

Figure 3b. In contrast, in Figure 4e is shown the profile of a very low 

intensity beam that is diffracting. The variation of output intensities in 

function of input intensities for 20 cm and 10 cm cuvettes are charted 

respectively in Figures 3e and 4f. Although fitting of these curves gives 

different coefficients in front of terms in Eq.(2) its long numerical 

simulations till z=20000 steps,  charted in Figures 3c,d and 4c,d keep the 

identical form of profile that is the signature of a soliton. These 

numerical profiles are in very good agreement with experimental profiles 

in Figures 3b and 4b. Therefore, even for very low intensities, soliton-

tweezers self-trapped in water suspension of nanobubbles remain robust 

allowing photobiomodulation and other noninvasive medical applications 

in body water colloidal nanosuspensions. 

 

Figure 4a Lateral view of the same green laser beam propagation in 10 cm cuvette 

shows the self-collimation caused by the self-organized interaction with nanobubbles in 

water suspension, even though intensities in the self-trapping range are three orders of 

magnitude lower than those of red laser. f Coefficients of the STCIE, experimentally 

obtained from fitted input-output data, allow long numerical simulations of soliton-

tweezer profiles that are conserved without any modification, not only after z=1000 

steps as in (c), but also after z=20000 steps as in (d). b These profiles coincide with the 

experimental one, and those in Figure 6. e Out of trapping range the beam is diffracting. 

Our synergetic approach establishes a very useful bridge between the 

theory and experiment via numerical simulations of novel STCIE 
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allowing a security test of non destructibility prior every medical 

application. 

 

3. Dissipative soliton-tweezers self-trapped in water suspensions of 

nanobubbles 

 

The nonlinear Schrödinger equation and the established soliton-tweezer 

complex intensity equation, both describe conservative systems. 

However, the energy losses are unavoidable in real dynamical systems 

and can disintegrate solitons unless gain is also present. Such systems are 

well described by the complex cubic-quintic Ginsburg-Landau equation 

(CQGLE) governing complex electric field E[9,14,21,29] 

i ∂E

∂z
+ (η + σ|I| − ν|I|2 + γ∇⊥

2 )E = i(δ + ε|I| − μ|I|2 + β∇⊥
2 )E. (3) 

The left hand side of this equation corresponds to conservative NSL. 

The dissipative, thus, imaginary right hand side contains the same terms 

but with different coefficients to be fixed from the experiment. The 

parameter δ of the first imaginary term must be negative, in order to 

ensure the stability of the system [5,9]. It corresponds to linear loss 

giving with propagation term the linear absorption equation. This term 

and negative nonlinear quintic term are both compensated by cubic gain, 

similarly as real terms of self-defocusing and self-focusing. We 

demonstrated that the self-organized dynamical balance of antagonist 

effects is in reality more complex, with second order derivatives 

compensation playing central role [9,42,43]. The  positive β diffusive 

term corresponds to gain. In order to connect this theory with 

experiments, all terms are multiplied by coefficients. Their values are 

measured in experiments [31]. Recently, B.N. Aleksić, et al. showed that 

the competing cubic-quintic nonlinearity represents a very good 

approximation of saturable nonlinearity [44].    

For the sake of comparative investigations we propagate through 20 cm 

u-cuvette again 727 nm Mira laser beam, but this time in femtosecond 

regime. This beam is spontaneously self-collimated during propagation, 

having a constant width along u-cuvette, as can be seen in Figure 5a. 
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a b

c

Figure 5 a Self-trapped and self-collimated femtosecond soliton-tweezer propagating 

through nanosuspension in 20 cm cuvette. b Experimentally obtained output profile. c 

Dots represent the measured output for various input intensities. The third order 

polynomial fit allows to obtain in front of I, I
2
,and I

3
in insert, numerical values for 

coefficients η, σ, and ν in left hand side of Eq. (3). 

A camera capture from the output of u-cuvette is presented in Figure 

5b.In fact, for each increase of input intensity it is taken picture of the 

output.  

Each camera capture is then analyzed using MATLAB in order to 

extract output intensity from each pixel. The addition of intensities of all 

pixels in a square framework fitting the light spot gives the value of 

corresponding global intensity charted as a dot in Figure 5c.Then, the 

ensemble of dots is fitted by a third order polynomial. The coefficients of 

this polynomial in insert give experimental values of coefficients in front 

of terms on the left hand side of Eq. (3) (CQGLE) in the same way as it 

was done for Eq. (1) (NSL). The imaginary right hand side of CQGLE is 

related  to the balance between gain and loss of power density. The 

coefficients multiplying corresponding terms can be find from power 

density diagram in Figure 6 obtained by systematic measure of input and 

output power after each camera capture. The global power is divided by 

the surface of the same square framework fitting the light spot, providing 

the same units of W/cm
2
 in both side of CQGLE. These input-output dots 

are fitted using the same third order polynomial. Indeed, right hand side 

terms are of the similar order of magnitude as left hand side terms. In the 

insert of Figure 6 are charted experimental values for the coefficients in 
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front of CQGLE imaginary terms. Our aim is to establish a direct 

correspondence between the experiment and the theory. However, 

theoretical approaches use electrical field, E to describe laser beam, 

while in experiments is measured the complex intensity, I=E
2
  [31]. 

Therefore, the direct correspondence between experiment and theory is 

established multiplying Eq. (3) by electrical field, E in order to recover 

the complex intensity 

 

Figure 6 Measures of output versus input power densities of self-trapped dissipative 

soliton-tweezer, charted by ensemble of dots (with uncertainty bars). Their third order 

polynomial fit provides us in insert with numerical values in front of Ṗ, Ṗ
2
,and Ṗ

3
 

corresponding to coefficients δ, ε, and μ in the right hand side of Eq. (3). 

i ∂I

∂z
+ (η + σ|I| − ν|I|2 + γ∇⊥

2 )I = i(δ + ε|I| − μ|I|2 + β∇⊥
2 )I. (4) 

This dissipative soliton-tweezer complex intensity equation (DSTCIE) 

is astonishingly symmetric. The imaginary and real quadratic terms 

increase intensity that is decreased by cubic terms in a self-organized 

balance. More generally, the compensation of antagonist effects is what 

keep the nature in dynamic equilibrium. The advantage of this novel 

approach is not only to describe correctly experiments but also to predict 

their results, which is of particular importance for medical applications. 

Numerical propagation of DSTCIE allows to test the feasibility of 

dissipative soliton-tweezers. 



 
 
 
 
102 V. SKARKA, M. LEKIĊ, AND S. ROKOTOARIMALALA 

0 5000 10000 15000 20000
0

2

4

I

z

0 5000 10000 15000 20000

0

10000

20000

30000

40000

50000

P

z

1300 1302 1304
4.18680

4.18681

4.18682

4.18683

4.18684

I

z

1290 1300 1310 1320

46000

47000

48000

49000

50000

P

z

 

Figure 7 Femtosecond dissipative soliton-tweezer is propagated numerically 

z=19000 steps using DSTCIE with  coefficients from inserts of Figures 5 and 6 showing 

stability of intensity and power. Only strong zooming revel weak breathing. 

A long numerical evolution till z=20000 shows in Figure 7, a very 

good stability of intensity, I and power, P. A strong zooming revel very 

weak breathing of intensity and little bit stronger of the power due to its 

quadratic dependence on beam width in 2D systems[9,14,21,29]. This 

breathing is more obvious in Figure 8 where the soliton-tweezer 3D 

profile oscillates between a dome and a "millstone".  
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Z=1310 Z=1330Z=1290

Z=1300 Z=1320 Z=1340

Figure 8 Breathing alternation of soliton-tweezer profiles (in arbitrary units) in form of 

"millstones" (first row)and domes (second row) corresponding to power maxima and 

minima in Figure 7. 

a

c

b

Figure 9a Same self-collimated 727 nm dissipative soliton-tweezer propagating through 

nanobubbles suspension in 10 cm cuvette. b Output profiles after propagation of 10 and 

20 cm are identical. c Fitting input-output intensity dots yields coefficients in front of 

linear, quadratic, and cubic intensity to be replaced in dissipative soliton-tweezer 

complex intensity Eq. (4) that can predict ulterior numerical propagation. 
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We remarked the same behavior in a previous theoretical publication 

concerning self-structuring of stable dissipative breathing vortex solitons 

in a colloidal nanosuspension [29]. It is amazing that such a breathing is 

confirmed by our approach that connect directly the theory with 

experiments. The inertia of nanobubbles may be the reason of this 

breathing. 

The self-trapping of spontaneously self-collimated soliton-tweezers is

 

Figure 10 Measured input-output dissipative power density provides values for 

coefficients of imaginary polynomial terms in Eq. (4). 

confirmed using a twice shorter u-cuvette under the identical 

conditions (see Figure 9a). The camera capture of soliton profile in the 

output of 10 cm cuvette (Figure 9b) corresponds to the profile of twice 

longer u-cuvette in Figure 5b. Measured output intensities and powers 

divided by square surface in Figure 9c and Figure 10 lead to the 

determination of coefficients in DSTCIE using the third order polynomial 

fits of corresponding input-output dots. The numerical propagation of 

DSTCIE gives the same results as in case of 20 cm cuvette (Figures 5 

and 6). Therefore, this novel equation correctly describes behavior of 

dissipative solitons-tweezers in experiments of propagation in water 

suspension of nanobubbles.  
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4. Self-generation of vortexsoliton-tweezers in nanosuspensions 
 

Vortex soliton-tweezers are robust steady-state structures with nonzero 

angular momentum and phase singularity in zero intensity center 

[14,21,30,45-47]. In conservatives systems v are governed by STCIE

Figure 11a Vortex soliton-tweezer spontaneously self-collimated in 10 cm u-cuvette. b 

Experimentally obtained vortex output profile is similar to profiles obtained by z=1800 

(d) and z=10000 steps (e) numerical simulations of STCIE with coefficients from insert 

(c). 

(Eq. 2). The propagation of dissipative vortex soliton-tweezers is 

described by DSTCIE (Eq. 4). We use a weak Thorlabs HeNe laser beam 

of 632.8 nm in order to generate vortex in 10 cm u-cuvette containing 

nanobubbles naturally suspended in pure water. Indeed, a vortex soliton-

tweezer is spontaneously self-collimated maintaining along u-cuvette the 

same width, as shown in Figure 11a. Figure 11b is the camera capture of 

output vortex profile. Dots with uncertainty bars in Figure 11c are result 

of systematic and precise measurement of output intensity for each 

gradually increasing input intensity. The already established procedure of 

fitting yields the values for STCIE coefficients in insert of Figure 11c. 

The same values can be used for left hand side DSTCIE coefficients. 

Those of right hand side are obtained fitting input-output power dots in 

Figure 12. Hence, the feasibility of vortex soliton-tweezers is established. 
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Figure 12 Output versus input power density of self-organized vortex soliton-tweezer 

fitted in order to obtain, in insert, values for coefficient in imaginary terms in DSTCIE. 

 

5. Novel intensity equation for spatiotemporal tweezing light bullets 

 

Light bullets are spatiotemporal solitons completely localized in space 

and time [9,19,20,48,49]. In conservative systems they are governed by 

three transverse dimensions (x, y, and t) NSL 

 
i ∂E

∂z
+ γ∆E + ηE + (σ|I| − ν|I|2)E = 0      (5) 

 where the Laplasian∆= ∂2 ∂t2⁄ + ∇⊥
2  is associated to the time variable t 

and the transverse coordinate 𝑟⊥. The propagation of light bullets in 

dissipative systems is described using 3D Ginsburg-Landau equation [9, 

48,49]. 
i ∂E

∂z
+ (η + σ|I| − ν|I|2 + γ∆)E = i(δ + ε|I| − μ|I|2 + β∆)E.         (6) 

In order to establish the direct connection between this spatiotemporal 

theory involving electric field, E and experiments measuring input and 

output intensities we multiply Eq. (5) by electric field, E in paraxial 

approximation 

 
i ∂I

∂z
+ γ∆I + ηI + (σ|I| − ν|I|2)I = 0      (7) 
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establishing cubic-quintic tweezing light bullet complex intensity 

equation (TLBCIE). In this novel equation not only diffraction, but also 

dispersion is compensated by competing cubic-quintic nonlinearity. 

In reality, experiments are always localized in  three spatial 

dimensions and in time. They involve always losses and sometimes gain. 

The adequate theoretical and numerical approaches are the prerequisites 

for experimental realization of light bullets. Therefore, the complex 

intensity is the right variable in an equation that pretends to describe the 

experiment in a realistic 

 
Figure 13 Dissipativelight bullet from non-spherically-symmetric input pulse 

becomes in the end of propagation spherically-symmetric like in Figure 14. 

way. Therefore, Eq. (6) is in paraxial approximation multiplied by 

electric field 

 
i ∂I

∂z
+ (η + σ|I| − ν|I|2 + γ∆)I = i(δ + ε|I| − μ|I|2 + β∆)I.            (8) 

In such a way we establish dissipative tweezing light bullet complex 

intensity equation (DTLBCIE). This equation represent the most general 

expression of self-organized description of 3D spatiotemporal soliton 

propagation,  taking into account that the competing cubic-quintic 

nonlinearity represents a very good approximation of saturable 

nonlinearity [9,44,48,49]. The DTLBCIE is astonishingly symmetric. 
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Figure 14 Dissipative light bullet with topological singularity in center is effectively 

a soliton-tweezing shell transporting small energy suitable for secure medical 

applications. 

The quadratic terms amplify the complex intensity through self-focusing 

and gain. They compensate the linear and cubic losses. The gain diffusive 

term with positive β balances the diffraction and dispersion. We 

demonstrated that in reality a cross compensation occurs  between the 

excess of the self-focusing, losses, and gain making the system self-

organized [9,48,49]. Numerically simulated light bullet from non-

spherically-symmetric input pulse is shown in Figure 13. The light bullet 

with topological singularity is the light shell (in Figure 14). The powerful 

femtosecond bullet consisting of ultra-thin light shell transports a very 

small energy suitable for nondestructive  and secure medical 

applications. 

 
6. Conclusions 

 

The prerequisites for understanding phenomena in nanophotonics 

are exhaustive experimental investigations coupled with theoretical 

advances using tools of numerical simulations. Object of our 

investigations is the water as the essential substance for the life in the 

earth. On the first glance it is astonishing that water contains naturally air 

nanobubbles. However, it is to forget that fishes breathe in water. 

Therefore, the pure water is in fact, nonlinear suspension of relatively 

stable nanobubbles. The nonlinear behavior of water is revealed using 

interactions with lasers. Propagating through water laser beams and 

pulses are spontaneously self-organized into soliton-tweezers that collect 

positively polarized nanoparticles with index of refraction larger than the 

water one. In opposite case, negatively polarized nanoparticles, with 

smaller refractive index, are expelled out, allowing laser light to 

propagate again through the higher index, thus to be in both cases self-
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focused. This self-focusing compensates all defocusing effect, 

spontaneously self-collimating the soliton-tweezer as our experiments 

and numerical simulations confirm. To be able to make the numerical 

simulations, it is necessary to have an adequate equation describing this 

phenomenon. We solved  the paradox that the theoretical descriptions use 

the electric field, while in experiments is measured the electric intensity, 

by introducing a novel complex intensity equation for conservative and 

dissipative systems. Terms of this equation contain coefficients 

determined from the experimental measurements. Soliton-tweezers 

profiles obtained by numerical propagation of established equation, 

coincide with experimentally obtained profiles, confirming the 

correspondence between experiment and theory. In such a way, the 

feasibility of soliton-tweezers to control and manipulate nanoparticles in 

water suspension, is established. The corresponding applications are 

multiples. They may be medical, biological, industrial... The blood in 

living organisms can be considered as water suspension of nanoparticles. 

Soliton-tweezers can be useful in fight against viruses, bacteria, and 

cancer cells in blood without damaging healthy tissues. The blood 

passing through our u-cuvette can be irradiate by laser. Depending of 

their frequency soliton-tweezers or tweezing light bullets can selectively 

destruct some viruses, bacteria, or cancer cells [50-52]. For instance, if 

Coronaviruses-19 (COVI-19) have higher resonant frequencies than the 

frequency of soliton-tweezer they can be inactivated in its centre due to 

high intensity, heat, and vibrations. If viruses have lower resonant 

frequencies, they can be expelled out of soliton on the wall of u-cuvette 

where they stay bind by monoclonal antibodies [53-55]. As a 

consequence, the blood is purified. It is important to note that the 

purification is efficient even though we do not know the viruses resonant 

frequencies. Indeed, for the same frequency of soliton-tweezer, viruses 

with higher resonant frequency are inactivated in soliton center by high 

heat, and vibrations. Simultaneously, those viruses with lower resonant 

frequencies are stick on wall by monoclonal antibodies [53-55]. Viruses 

are much smaller than other nanoparticles in body water, so that they 

have much higher resonant frequencies than other. The safe use of low 

power soliton-tweezers for noninvasive medical applications is in such a 

way reinforced.  
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ABSTRACT 

 
The problem of brachistochronic motion of a heavy uniform ball rolling 

without slip along the upper outside surface of an imperfect rough stationary 

sphere, is solved. The control forces are located in the tangential plane, and their 

total power equals zero. In the first part of the paper the determination of the 

brachistochronic motion is solved as the problem of optimal control using 

Pontryagin’s maximum principle. This solution corresponds to the motion of the 

heavy ball along a perfect rough sphere. The second part provides the case when 

the constraint between the sphere and the ball is imperfectly rough. Here, the 

problem of optimal control is formulated in such way that the tangential 

component of the reaction of constraint is taken for the control, with the 

restriction resulting from Coulomb’s laws of sliding friction. The problem thus 

formulated belongs to the theory of singular optimal controls, and the solution 

that satisfies the Maximum principle consists of a singular part and a non-

singular part.  
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1. Introduction 

 

The classical brachistochrone problem of the heavy point in a vertical plane has 

experienced application to various classes of mechanical systems over the past 

years. Among the contemporary works, the doctoral dissertation [1] should be 

noted, which proves the actuality of the problem even today. This recently 

defended dissertation reveals that the problems of the brachistochronic motions 

involve the areas not investigated yet. The dissertation provides a very good 

survey of the results which include several of our papers as well. In creating the 

task of optimal control, as we do in our papers, some of the reaction of 

constraints is taken for the control. The same has been done in [2]. The 

brachistochronic motion of the heavy point under the action of the sliding 

friction force was also the subject of the research in both [3] and [4], where 

bilaterally limited normal reaction of the constraint was studied. 

In [5] both the classical brachistochrone problem and the unrestrained 

brachistochrone problem were formulated within the framework of the optimal 

control theory. Also, the extension to the cases of the brachistochrone problem 

for a rolling rigid body in a vertical plane, as well as the three-dimensional-

minimum-time optimal problem for a disk rolling on the interior surface of a 

hemisphere was given. 

Here, the research focuses on those brachistochrone problems of the 

nonholonomic mechanical systems where the reaction of the nonholonomic 

constraint is limited, and the paper is a continuation of the authors’ earlier 

research studies.  

In [6] the lateral reaction of the constraint (|𝑅𝜂| < 𝑁𝑏) of the Chaplygin sleighis 

bilaterally limited (Fig. 1), and the brachistochronic motion is realized by 

subsequent imposition of an ideal holonomic constraint to the mass center C. 

This type of restriction was considered in a well-known work by Caratheodory 

[7]. 
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Fig.1 [6] Brachistochronic motion of the Chaplygin sleigh 

 

The brachistochronic motion is realized in such way that on some parts the 

constraint reaction is on one of its limits 𝑅𝜂 = ±𝑁𝑏 and a singular part is in the 

middle of motion, so that angular acceleration, depending on the angle, is given 

in Fig. 1c. 

In the cases when the disks are rolling along horizontal surfaces Coulomb’s 

laws of sliding friction limit the maximum possible horizontal components of 

the constraint reactions.  

Paper [8] considers the brachistochronic motion of a vertical disk along a 

horizontal plane. Motion is controlled by three couples and the restrictions arise 

from the condition that slip will not occur at the contact point of the disk and the 

surface. Figure 2b) shows change in the horizontal components of the disk 

constraint reactions in the numerical example, where a non-singular part is in 

the middle of the interval of motion. 

Previous research was extended in [10] to a more complex system of bodies, the 

simplified model of a vehicle [9], Fig. 3. Wheels slip is prevented based on the 

restrictions following from Coulomb’s laws of friction. For real values of 

Coulomb’s coefficient of friction, in this case too, one obtains non-singular 

parts of the brachistochronic motion, where a horizontal component of the 

reaction force is on its limit. 
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a) 

 
b) 

Fig. 2 [8] Brachistochronic motion of a vertical disk 

 

 

 

𝜇2(𝑡)𝑁2 = |𝑅𝐴| < 𝐹2
𝑓𝑟
= 𝜇𝑁2,    𝜇1(𝑡)𝑁1 = 𝐹𝑏 = √𝑅𝐵

2 + 𝐹1
2 < 𝐹1

𝑓𝑟
= 𝜇𝑁1 

 

Fig. 3 [10] Brachistochronic motion of a simplified vehicle model [9] 

 

The major goal of this paper is to determine the brachistochronic motion of the 

heavy ball rolling along a real rough sphere. For various real materials that the 

ball and the sphere can be made of their contact cannot be considered perfectly 

rough. In real rough contact the quotient of the intensity of horizontal and 

vertical component of the constraint reaction must be lower than the real value 

of Coulomb’s friction coefficient. It is necessary to apply the procedure similar 

to that for the rolling disk [8]. 
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2. Problem formulation 

 

Observe the motion of a heavy uniform ball rolling without slip along the upper 

outside surface of an imperfect rough stationary sphere (Fig. 4) 

 

 
Fig.4 Heavy ball rolling without slip along the upper outside surface of a 

stationary sphere(𝑂𝐶̅̅ ̅̅ = 𝐿,   𝑃𝐶̅̅ ̅̅ = 𝑟) 
 

The control forces 𝐹2 and 𝐹3 are located in the tangential plane of the other 

sphere, along which the center of the ball is moving, and their total power 

equals zero in the brachistochronic motion of the mechanical systems. Thus, 

during motion the total mechanical energy is maintained. The initial value of the 

mechanical energy is specified, and the initial and final position of the ball’s 

center is defined by the spherical coordinate system angles 𝜑 and 𝜃, the ball 

orientation (Euler angles) not being considered in this problem. Such 

mechanical system is nonholonomic, and dynamic equations in this paper are 

derived using the general theorems of mechanics. 

The theorems on the motion of the center of mass and the change of the kinetic 

moment for the center of mass read: 

 

𝑚𝑎⃗𝐶 = 𝐹⃗𝑅
𝑆,         𝐿̇⃗⃗𝐶 = 𝑀⃗⃗⃗𝐶

𝑆,                                                                                   (1) 
 

where the velocities and accelerations of the mass center in this coordinate 

system are: 

 

𝑣𝐶1 = 0, 𝑣𝐶2 = 𝐿𝜑̇ 𝑐𝑜𝑠 𝜃 , 𝑣𝐶3 = 𝐿𝜃̇

𝑎𝐶1 = −𝐿(𝜑̇
2𝑐𝑜𝑠2𝜃 + 𝜃̇2), 𝑎𝐶2 = 𝐿(𝜑̈ 𝑐𝑜𝑠 𝜃 − 2𝜑̇ 𝜃̇𝑠𝑖𝑛 𝜃),

𝑎𝐶3 = 𝐿(𝜃̈ + 𝜑̇
2 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃),

                   (2) 

 

and dynamic quantities in expressions (1) are given by expressions: 
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𝐿⃗⃗𝐶 = 𝐽𝜔⃗⃗⃗,   𝐽 =
2

5
𝑚𝑟2,

𝐹⃗𝑅
𝑆 = 𝑚𝑔⃗ + 𝑁⃗⃗⃗ + 𝐹⃗2 + 𝐹⃗3 + 𝑅⃗⃗2 + 𝑅⃗⃗3,

𝑀⃗⃗⃗𝐶
𝑆 = 𝑟𝑅3𝑒2 − 𝑟𝑅2𝑒3.

 (3) 

 

Nonholonomic constraints are obtained from the condition that there is no slip 

at the contact point: 

 

𝑣⃗𝐶 = 𝜔⃗⃗⃗ × (𝑟𝐶 − 𝑟𝑃)    ⇒     𝐿𝜑̇ cos 𝜃 = 𝑟𝜔3  ∧   𝐿𝜃̇ = −𝑟𝜔2, (4) 

 

where 𝜔𝑖, 𝑖 = 1,2,3 are projections of the ball’s angular velocity onto the 

movable coordinate system at point C (Fig. 4). 

Now, dynamic equations can be written in the form: 

 

−
𝑚𝑟2

𝐿
(𝜔2

2 +𝜔3
2) = 𝑁 −𝑚𝑔 sin𝜃 ,

𝑚(𝑟𝜔̇3 + 𝑟
2𝜔2𝜔3 tan 𝜃 𝐿⁄ ) = 𝑅2 + 𝐹2,

𝑚(−𝑟𝜔̇2 + 𝑟
2𝜔3

2 tan 𝜃 𝐿⁄ ) = 𝑅3 + 𝐹3 −𝑚𝑔cos 𝜃,
𝐽𝜔̇1 = 0,

𝐽(𝜔̇2 − 𝑟𝜔3
2 tan 𝜃 𝐿⁄ − 𝑟𝜔1𝜔3 𝐿⁄ ) = 𝑟𝑅3,

𝐽(𝜔̇3 + 𝑟𝜔2𝜔3 tan 𝜃 𝐿⁄ + 𝑟𝜔1𝜔2 𝐿⁄ ) = −𝑟𝑅2.

 (5) 

 

The total power of control forces in generalized brachistochrone problems 

equals zero [11]: 

 

𝐹2𝑣𝐶2 + 𝐹3𝑣𝐶3 = 0  ⇒   𝐹2𝜔3 − 𝐹3𝜔2 = 0, (6) 

 

so that from dynamic equations (5) the conservation of the total mechanical 

energy follows 

 
1

2
𝐽𝜔1

2 +
1

2
(𝐽 + 𝑚𝑟2)(𝜔2

2 +𝜔3
2) + 𝑚𝑔𝐿 sin𝜃 = 𝐸. (7) 

 

as well as the maintenance of the projection of the ball’s angular velocity onto 

the radial direction: 

 

𝜔1 = 𝐶1. (8) 

 

By introducing dimensionless variables: 

 

𝑟′ = 𝑟 𝑟⁄ = 1,   𝐿′ = 𝐿 𝑟⁄ = 3, 𝑡′ = 𝑡√
𝑔

𝑟
 , 𝜔𝑖

′ = 𝜔𝑖√
𝑟

𝑔
,

𝑁′ = 𝑁 (𝑚𝑔),⁄ 𝐹𝑖
′ = 𝐹𝑖 (𝑚𝑔)⁄ , 𝑅𝑖

′ = 𝑅𝑖 (𝑚𝑔)⁄ , 𝐸′ = 𝐸 (𝑚𝑔).⁄

 (9) 

 

in the text below, the label “prim” will be removed, and all expressions will be 

in dimensionless variables. 
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The laws of change in the control forces are of the dimensionless form: 

 

𝐹2 =
2

15
𝜔1𝜔2 +

7

15
𝜔2𝜔3 tan 𝜃 +

7

5
𝜔̇3,

𝐹3 =
2

15
𝜔1𝜔3 +

7

15
𝜔3
2 tan 𝜃 −

7

5
𝜔̇2 + cos 𝜃 ,

 (10) 

 

and the reactions of constraints are: 

 

 𝑁 = sin𝜃 −
1

3
(𝜔2

2 +𝜔3
2) =

17

7
sin 𝜃 −

10

21
(𝐸 − 𝐶1

2 5⁄ ),

𝑅2 = −
2

15
(𝜔1𝜔2 + 𝜔2𝜔3 tan 𝜃 + 3𝜔̇3),

𝑅3 = −
2

15
(𝜔1𝜔3 + 𝜔3

2tan 𝜃 − 3𝜔̇2).

 (11) 

Detachment angle (𝑁(𝜃𝑝𝑒𝑟𝑓.𝑟𝑜𝑢𝑔ℎ) = 0)for the case of perfect rough sphere 

and zero initial value of the angular velocity projection 𝜔1 onto the radial 

direction:sin(𝜃𝑝𝑒𝑟𝑓.𝑟𝑜𝑢𝑔ℎ) =
10𝐸

51
. 

 

Condition for non-slip occurrence based on Coulomb’s laws of sliding friction: 

 

𝑅 = √𝑅2
2 + 𝑅3

2 ≤ 𝜇𝑁. (12) 

 

The next section considers the brachistochrone problem as a problem of optimal 

control when the sphere is perfectly rough and there are no restrictions (12), and 

section 3 deals with the case of a real rough sphere, when given restriction must 

be taken into account.  

 

 

3. The brachistochrone problem for the case of perfect rough sphere 

 

Let us formulate the problem of optimal control that will be solved using 

Pontryagin’s maximum principle [12]. 

Let it be known at the initial moment: 

 

𝑡0 = 0, 𝜑(𝑡0) = 0, 𝜃(𝑡0) = 𝜃0, 𝐸(𝑡0) = 𝐸, (13) 

 

and let it be known at the final moment: 

 

𝑡𝑓 =?, 𝜑(𝑡𝑓) = 𝜑𝑓 , 𝜃(𝑡𝑓) = 𝜃𝑓 , (14) 

 

where: 

 

𝜃𝑝𝑒𝑟𝑓.𝑟𝑜𝑢𝑔ℎ < 𝜃𝑓 ≤ 𝜃0 <
𝜋

2
, 0 ≤ 𝜑𝑓 < 𝜋. (15) 

 

Differential equations of this problem of optimal control can be obtained from 

(4), where it has been taken that 𝐿 = 3: 
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𝜓̇ = 𝜔1, 𝜑̇ =
𝜔3

3 cos𝜃
, 𝜃̇ =

−𝜔2

3
. (16) 

 

Energy integral (7) obtains the form: 

 

2𝜔1
2 + 7(𝜔2

2 +𝜔3
2) + 30 sin𝜃 = 10𝐸. (17) 

 
The optimal control problemis as follows: For the mechanical system, for 

specified differential equations(16) and initial (13) and end conditions (14), 

determine the motion of the system in minimum time while maintaining the 

energy integral (17).
 In order to apply the maximum principle, cost functional is formed:

  

𝑡𝑓 = ∫ 𝑑𝑡
𝑡𝑓
𝑡0

.                                                                                                       (18) 

 

Pontryagin's function: 

 
𝐻 = −1+ 𝜆𝜓𝜔1 + 𝜆𝜑𝜔3 (3 cos 𝜃)⁄ − 𝜆𝜃𝜔2 3⁄ +

+𝜌(2𝜔1
2 + 7(𝜔2

2 +𝜔3
2) + 30 sin 𝜃 − 10𝐸),

 (19) 

 

and costate system: 

 

𝜆̇𝜓 = 0,   𝜆̇𝜑 = 0,   𝜆̇𝜃 = −𝜆𝜑𝜔3 sin 𝜃 (3cos2𝜃)⁄ − 30𝜌 cos𝜃. (20) 

 

Transversality conditions are of the form: 

 

𝜆𝜓(0) = 0,   𝜆𝜓(𝑡𝑓) = 0. (21) 

 

Maximum principle yields the conditions: 
 
𝜕𝐻

𝜕𝜔𝑖
= 0   ⇒   𝜔1 = −𝜆𝜓 (4𝜌)⁄ ,

𝜔2 = 𝜆𝜃 (42𝜌)⁄ , 𝜔3 = −𝜆𝜑 (42𝜌 cos 𝜃)⁄ .
 (22) 

 

The final moment is indefinite so that: 

 

𝐻 = 0  ⇒   𝜌 = 1 (20(3 sin𝜃 − 𝐸))⁄ . (23) 

 

There is no rotation around the axis in the radial direction: 

 

(𝜆̇𝜓(𝑡) = 0 ∧ 𝜆𝜓(0) = 0 ∧ 𝜆𝜓(𝑡𝑓) = 0) ⇒ 𝜆𝜓(𝑡) = 0 ⇒ 𝜔1(𝑡) = 0. (24) 

 

On the brachistochronic motion, based on (11) and (20-24), the components of 

the constraint reaction are: 
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𝑁 = (51 sin 𝜃 − 10𝐸) 21⁄ ,   𝑅 = √𝑅2
2 + 𝑅3

2 = 2 cos 𝜃 7⁄ . (25) 

 

When the ball is rolling down, the angle is decreasing, the normal component of 

the constraint reaction 𝑁 is decreasing too, whereas tangential component 𝑅 is 

increasing, so that in term of the slip, the critical slip is at the end of motion. 

Now, the discussion on the possible values of the task parameters 𝜃𝑓 , 𝐸, 𝜇 can be 

conducted, where 𝜃0 = 1.5 

1. 𝑁 ≥ 0 ⇒ 𝐸 ≤ 51 sin 𝜃𝑓 10⁄  the point must be below the red colored 

surface in Fig. 5; 

2. 𝑅 ≤ 𝜇𝑁 ⇒ 𝐸 ≤ 3(17𝜇 sin 𝜃𝑓 − 2cos 𝜃𝑓) (10𝜇)⁄  the point must be 

below the blue colored surface; 

3. 𝐸 ≥ 3 sin 𝜃0 the point must be above the green colored surface because 

the initial kinetic energy is non-negative 

This means that the representative point (𝜃𝑓 , 𝜇, 𝐸) corresponding to the task 

parameters must be located simultaneously above the green and below blue 

surface. The red surface is always above the blue one, which means that if there 

is no slip at the end point, there will be no detachment either. 

 

 
 

Fig. 5 Discussion on the possible positions of the representative point(𝜃𝑓 , 𝜇, 𝐸) 
 

Also, it is noticeable that identical value 𝑅 of the constraint reaction in the 

tangential plane is obtained from (10) and (11) when the motion is non-

controlled 𝐹2 = 𝐹3 = 0 and when 𝜔1 = 0, so the above discussion is applicable 

to non-controlled free rolling of a heavy ball along a real rough sphere. 

Numerical solution parameters for the case of perfect rough surface in this 

example is: 

 

𝜃0 = 1.5,   𝐸 = 3,   𝜃𝑓 = 𝜋 4⁄ , 𝜑𝑓 = 𝜋 2⁄  . (26) 

 

Two-point boundary value problem of the maximum principle, in this case, has 

differential equations: 
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𝜑̇ = 10𝜆𝜑(1 − sin𝜃) (21 cos
2 𝜃)⁄ ,

𝜃̇ = 10𝜆𝜃(1 − sin 𝜃) 21⁄ ,

𝜆̇𝜑 = 0,

𝜆̇𝜃 = −10𝜆𝜑
2 (1 − sin𝜃) sin𝜃 (21 cos3 𝜃) + cos 𝜃/(2(1 − sin𝜃))⁄ ,

 (27) 

 

with initial conditions: 

 
𝑡0 = 0, 𝜑(𝑡0) = 0, 𝜃(𝑡0) = 𝜃0, 𝜆𝜑(𝑡0) =? ,

 0)( 0tH 𝜆𝜃(𝑡0) = −√21 (10(1 − sin𝜃0))⁄ − 𝜆𝜑
2 (𝑡0) cos

2 𝜃0⁄ .
 (28) 

 

We’re choosing 𝜆𝜑(𝑡0),   𝑡𝑓 and shooting: 𝜑(𝑡𝑓) = 𝜑𝑓 , 𝜃(𝑡𝑓) = 𝜃𝑓 where 

0,))sin1(10/(cos21)( 00

2

0

2  ftt 

 

Numerical solution this two-point 

boundary value problem is: 𝑡𝑓 = 5.882531, 𝜆𝜑(0) = 1.08448 and diagrams of 

the law of change in polar angles and required coefficient of friction 𝜇 =
𝑅 𝑁⁄ = 2 cos𝜃 (17 sin 𝜃 − 10)⁄  are given in Fig. 6. 

 

 
 

 
 

Fig. 6 Brachistochronic rolling of a ball along a perfect rough surface 

 

A new form of differential equations (27): 

 

1 2 3 4 5 6
t
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𝑑𝜑

𝑑𝜃
=

𝜆𝜑

𝜆𝜃 cos
2 𝜃
=

𝜆𝜑

−cos2 𝜃√21 (10(1−sin𝜃))⁄ −𝜆𝜑
2 cos2 𝜃⁄

,

𝑑𝑡

𝑑𝜃
=

−3

𝜔2
=

−21

10𝜆𝜃(sin𝜃−1)
=

−21

10(−√21 (10(1−sin𝜃))⁄ −𝜆𝜑
2 cos2 𝜃⁄ )(sin𝜃−1)

,
 (29) 

 

gives us that the solution can be also reached through the squares, given that the 

angle 𝜃 is monotonically decreasing over time: 

 

𝜑𝑓 = ∫
𝜆𝜑(0)𝑑𝜃

cos2 𝜃√21 (10(1−sin𝜃))⁄ −𝜆𝜑
2 (0) cos2 𝜃⁄

𝜃0
𝜃𝑓

,

𝑡𝑓 = ∫
21𝑑𝜃

10√21 (10(1−sin𝜃))⁄ −𝜆𝜑
2 (0) cos2 𝜃⁄ (1−sin𝜃)

𝜃0
𝜃𝑓

.
 (30) 

 

By solving integral equations (30), it is easier to obtain the already obtained 

numerical solutions for (𝑡𝑓 , 𝜆𝜑(0)).  

Necessary value of the Coulomb coefficient of friction at the beginning of 

motion is: 

 

𝜇∗ = 𝑅(0) 𝑁(0)⁄ = 2 𝑐𝑜𝑠 𝜃0 (17 𝑠𝑖𝑛 𝜃0 − 10)⁄ = 0.0203343 ,                     (31) 
 

whereas necessary value of the Coulomb coefficient of friction at the end of 

motion is: 

 

𝜇∗∗ = 𝑅(𝑡𝑓) 𝑁(𝑡𝑓)⁄ = 2 𝑐𝑜𝑠 𝜃𝑓 (17 𝑠𝑖𝑛 𝜃𝑓 − 10)⁄ = 0.699823.                     (32) 
 

The assumption that surfaces are perfectly rough in this task of the 

brachistochronic motion is satisfied only for 𝜇 ≥ 𝜇∗∗ (e.g., rubber on rubber and 

glass on glass). If this is not the case (e.g., wood on wood), slip on the 

brachistochronic motion would occur earlier. The analysis also holds for non-

controlled motion of a heavy ball. 

 

 

 

Fig. 7 Slip circles depending on the Coulomb coefficient of friction 
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Figure 7 shows slip circles that yield the lowest possible end positions during 

brachistochronic motion, depending on the coefficient of friction. This means 

that the lower the coefficient of friction, the more restricted the region where the 

surface is considered perfectly rough. It may even happen that for 𝜇 < 𝜇∗ slip 

occurs at the beginning of motion. In the case when 𝜇∗ ≤ 𝜇 < 𝜇∗∗ the problem 

of optimal control should include the restriction (12) and the task of optimal 

control becomes considerably complicated. Such possibility will be analyzed in 

the section below. 

 

 

4. The brachistochrone problem for the case of imperfect rough sphere 

(𝜇∗ ≤ 𝜇 < 𝜇∗∗) 
 

Let us observe the brachistochrone problem with numerical parameters (26) and 

seek the solutions in a neighborhood of 𝜇 = 𝜇∗∗ where over the entire interval: 

 

𝜔2(𝑡) > 0, 𝜔̇2(𝑡) > 0, 𝜔3(𝑡) = √30 (1 − 𝑠𝑖𝑛 𝜃(𝑡)) 7⁄ − 𝜔2
2(𝑡) > 0.         (33) 

 

Differential equations written through the theta angle as independent variables 

are: 

 
𝑑𝑡

𝑑𝜃
=

−3

𝜔2
,

𝑑𝜑

𝑑𝜃
= −√30(1 − 𝑠𝑖𝑛 𝜃) 7⁄ − 𝜔2

2 (𝜔2 𝑐𝑜𝑠 𝜃)⁄ ,

𝑑𝜔2

𝑑𝜃
=

−3

𝜔2
((30(1 − 𝑠𝑖𝑛 𝜃) 7⁄ − 𝜔2

2) 𝑡𝑎𝑛 𝜃/3 + 5𝑅3 2⁄ ) .

                                (34) 

 

Determination of the set of permissible values of the control 𝑢 = 𝑅3  is based 

on (5), (6) and (12): 

 
𝑅3𝜔2 − 𝑅2𝜔3 = 2𝜔2 cos 𝜃 7⁄

𝑅2
2 + 𝑅3

2 ≤ 𝜇2𝑁2
⇒ 

 

𝑅3 ∈ [𝑅3
𝑚𝑖𝑛, 𝑅3

𝑚𝑎𝑥],

𝑅3
𝑚𝑎𝑥 =

2 cos𝜃𝜔2
2+𝜔3√49𝜇

2𝑁2(𝜔2
2+𝜔3

2)−4𝜔2
2 cos2 𝜃

7(𝜔2
2+𝜔3

2)
,

𝑅3
𝑚𝑖𝑛 =

2 cos𝜃𝜔2
2−𝜔3√49𝜇

2𝑁2(𝜔2
2+𝜔3

2)−4𝜔2
2 cos2 𝜃

7(𝜔2
2+𝜔3

2)
.

 (35) 

 

In order that the set of permissible controls will not be an empty set: 

 

𝜔2
2 ≤

49𝜇2𝑁2(𝜔2
2+𝜔3

2)

4 𝑐𝑜𝑠2 𝜃
=

30𝜇2(17𝑠𝑖𝑛 𝜃−10)2(1−𝑠𝑖𝑛𝜃)

28 𝑐𝑜𝑠2 𝜃
.                                            (36) 

 

For the solutions in a neighborhood of 𝜇 = 𝜇∗∗ it is sufficient to introduce the 

restriction: 
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𝜔2(𝑡𝑓) ≤ 𝜇(17 sin 𝜃𝑓 − 10)√30(1 − sin 𝜃𝑓) 28⁄ cos 𝜃𝑓⁄ . (37) 

Let us assume that this condition is satisfied in order to avoid a very complex 

task of optimal control. It will be checked only subsequently after numerical 

solution is obtained. 

Cost functional in this new problem of time minimization is: 

 

𝑡𝑓 = ∫
3𝑑𝜃

𝜔2

𝜃0
𝜃1

.                                                                                                (38) 

 

whereas Pontryagin's function 

 

𝐻 =
−3

𝜔2
−
𝜆𝜑√30(1−sin𝜃) 7⁄ −𝜔2

2

𝜔2 cos𝜃
−

−
3𝜆𝜔2

𝜔2
((30 (1 − sin𝜃) 7⁄ − 𝜔2

2) tan 𝜃/3 +
5𝑢

2
) +

+𝜌(𝑢2 +
𝜔2
2(𝑢−2cos𝜃 7⁄ )2

30(1−sin𝜃) 7⁄ −𝜔2
2 −

𝜇2(17sin𝜃−10)2

49
).

 (39) 

 

Here, the maximum principle gives the following possibilities for optimal 

control over some of the intervals 

 

𝑢𝑜𝑝𝑡 = {

𝑢𝑠, 𝜆𝜔2 = 0 

𝑅3
𝑚𝑎𝑥,   𝜆𝜔2 < 0

𝑅3
𝑚𝑖𝑛,   𝜆𝜔2 > 0

𝜌 =

{
 
 

 
 

0, 𝜆𝜔2 = 0 
15𝜆𝜔2(7𝜔2

2−30+30𝑠𝑖𝑛 𝜃)

8𝜔2(𝜔2
2 𝑐𝑜𝑠 𝜃+15𝑅3

𝑚𝑎𝑥(−1+𝑠𝑖𝑛𝜃))
, 𝜆𝜔2 < 0  

15𝜆𝜔2(7𝜔2
2−30+30𝑠𝑖𝑛 𝜃)

8𝜔2(𝜔2
2 𝑐𝑜𝑠 𝜃+15𝑅3

𝑚𝑖𝑛(−1+𝑠𝑖𝑛 𝜃))
.  𝜆𝜔2 > 0

                                              (40) 

 

The costate variable 𝜆𝜔2 in this task of optimal control has a role of so-called 

“switching function”, so that its sign on a non-singular part determines whether 

the control will be on the upper or lower limit. On a singular part it equals zero. 

Calculation of the singular optimal control [13] can be performed in the 

following manner: 

 

𝜆𝜔2 = 0 ⇒
𝑑𝜆𝜔2

𝑑𝜃
= −

𝜕𝐻

𝜕𝜔2
= 0 ⇒ 𝜆𝜑 = −

√7cos𝜃√30(1−sin𝜃)−7𝜔2
2

10(1−sin𝜃)
,

𝑑2𝜆𝜔2

𝑑𝜃2
= 0 ⇒ 𝑢𝑠 =

2

7
cos𝜃

7𝜔2
2+15sin𝜃−15

15(sin𝜃−1)
⇒ 𝑅 =

2

7
cos 𝜃 .

 (41) 

 

On a non-singular part: 

 

𝑅 = 𝜇𝑁 = 𝜇(17 𝑠𝑖𝑛 𝜃 − 10) 7⁄ .                                                                       (42) 
 
The assumed structure of the optimal control in a neighborhood of 𝜇 = 𝜇∗∗ is: 
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𝑢𝑜𝑝𝑡 = {
𝑢𝑠,   𝜃0 ≥ 𝜃 > 𝜃

∗

𝑅3
𝑚𝑖𝑛,   𝜃∗ ≥ 𝜃 ≤ 𝜃𝑓

.                                                                          (43) 

 

Numerical solution procedure (two-parameter shooting) consists of the 

following steps: 

1. by choosing 𝜔2(𝜃0) and 𝜃∗, numerical integration of the basic system 

over the interval[𝜃0, 𝜃
∗] 

 
𝑑𝜑

𝑑𝜃
= −√30(1 − sin𝜃) 7⁄ − 𝜔2

2 (𝜔2 cos 𝜃)⁄ ,   𝜑(𝜃0) = 0

𝑑𝜔2

𝑑𝜃
= −

3

𝜔2
((30 (1 − sin𝜃) 7⁄ − 𝜔2

2) tan 𝜃/3 + 5𝑢𝑠 2⁄ ) .
 (44) 

2. and basic and costate system over the interval [𝜃∗, 𝜃𝑓] 

 
𝑑𝜑

𝑑𝜃
= −√30(1 − sin𝜃) 7⁄ − 𝜔2

2 (𝜔2 cos 𝜃)⁄ ,

𝑑𝜔2

𝑑𝜃
= −

3

𝜔2
((30 (1 − sin𝜃) 7⁄ − 𝜔2

2) tan 𝜃/3 + 5𝑅3
𝑚𝑖𝑛 2⁄ ) ,

𝑑𝜆𝜑

𝑑𝜃
= 0,                    𝜆𝜑(𝜃

∗) = −
√7cos𝜃∗√30(1−sin𝜃∗)−7𝜔2

2(𝜃∗)

10(1−sin𝜃∗)
,

𝑑𝜆𝜔2

𝑑𝜃
= −

𝜕𝐻

𝜕𝜔2
= ⋯,                                                   𝜆𝜔2(𝜃

∗) = 0.

 (45) 

 

fulfillment of conditions is 𝜑(𝜃𝑓) = 𝜑𝑓, 𝜆𝜔2(𝜃𝑓) = 0 ensured. 

Numerical example was done for the value of Coulomb’s coefficient 𝜇 = 0.6 

and numerical solutions were obtained 𝜃∗ = 0.821251, 𝜔2(𝜃0) = 0.0878961. 

 

The diagram of the “switching function” is given in Fig. 8, the dashed line 

(𝜇 = 0.6). The final part of the motion is shown only, the solid line indicating 

the case when it is possible to a have a singular part over the entire interval 

(𝜇 ≥ 𝜇∗∗), and the dash-dotted line designating a boundary case (𝜇 = 𝜇̅). 

 

By gradually decreasing the coefficient of friction and conducting the numerical 

solution procedure, it can be established that conditions (37) are disrupted for 

𝜇̅ = 0.576383 . 
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Fig. 8 The switching function 𝜆𝜔2 

 

Here, it is also necessary to check whether the conditions (40) of the maximum 

principle are fulfilled after numerical solutions is done 

 

𝜆𝜔2(𝜃) ≥ 0,    𝜃
∗ ≤ 𝜃 ≤ 𝜃𝑓,                                                                       (46) 

 

as well as the condition (37). 

If the coefficient of friction is lower than 𝜇̅ the structure of optimal control (43) 

changes, and the numerical solution procedure becomes more complex. 

 

 

5. Conclusions 

 

The problem of brachistochronic motion of a heavy uniform ball rolling without 

slip along the upper outside surface of an imperfect rough stationary sphere is 

solved. 

In the first part of the paper the determination of the brachistochronic motion is 

solved as the problem of optimal control using Pontryagin’s maximum 

principle. Three projections of the ball’s angular velocity onto the base vectors 

of the spherical coordinate system are taken for controls. The two-point 

boundary value problem, which is reduced to the two-parameter shooting of one 

coordinate of the conjugate vector and end moment, is solved. It is shown that 

there is no angular velocity projection onto the radial direction.  This solution 

corresponds to the motion of the heavy ball along a perfect rough sphere, 

because it is necessary to ensure unrealistically high Coulomb coefficient of 

sliding friction. 

It is shown that mutual detachment of the bodies cannot occur before their 

mutual slipping at the contact point. A corresponding numerical example is 

given, with graphical representation of the effects of initial energy values, 

Coulomb coefficient and ultimate height of the ball center on the solution 
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structure, in this case. The review highlights regions where it is possible to 

obtain a singular control across the entire motion or a combination of a singular 

and non-singular part of the optimal trajectory.    

The second part provides the following discussion: if the constraint between the 

sphere and the ball is imperfectly rough, the formulation of the optimal control 

problem should include restrictions to the ratio between the tangential and the 

normal components of the reaction of constraint. Here, the problem of optimal 

control is formulated in such way that the tangential component of the reaction 

of constraint is taken for the control, with the restriction resulting from 

Coulomb laws of sliding friction. The problem thus formulated belongs to the 

theory of singular optimal controls, and the solution that satisfies the Maximum 

principle consists of a singular part at the beginning of motion and a non-

singular part, during which the ratio between mentioned components has 

maximum possible value that concrete surfaces can achieve. 

Futher research of this problem involves: research on the structure of control 

and appropriate numerical solutions for 𝜇∗ < 𝜇 < 𝜇̅, generalization of the result 

to the ball rolling on the stationary rotating surface and generalization of the 

result to the ball rolling on the moving surface which is rotating about vertical 

axis at constant angular velocity. 
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ABSTRACT 
 

Proposed model is based on interpretation of fluid diffusion in porous 

particles, as quasi-chemical reaction of second order. The diffusion flux is 

expressed in Onsager form Ji =   Li Xji, with non-linear thermodynamic force 

Xji. The driving force is considered as a product Xji = xj (1–xi) of fullness degree 

by fluid (xj) of one type of pores, and an emptiness (1–xi) of neighbor type of 

pores. The model is designed to describe the drying dynamics of porous 

polypropylene particles impregnated with a solvent. Three types of "moisture" 

were assumed inside porous particles, which are corresponded to three sizes of 

pores. An advantage of such a model is that instead of empirical dependence of 

diffusivity on moisture (usually used for description of such processes), the 

measured characteristics of porous structure become parameters of model. 

Results of experiments and model formulation are presented in this report. 

 

 
1. Introduction 

 

Diffusion is the physical process by which matter is transported from 

one part of a system to another as a result of random molecular motions 

[1]. Diffusion is driven by a gradient in concentration. This was 

recognized by Fick (1855), adopting to diffusion the mathematical 

equation of heat conduction derived earlier by Fourier (1822). According 

to Fick's law, the diffusion flux Ji is proportional to the negative of 

concentration gradient: 
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i
i i s

d y
J D C

dx
    (n1) 

where  yi  – molar fraction of i-th component in fluid mixture;  Ji – flux 

per unit area of section;  Di  – diffusion coefficient;  Cs  – total 

concentration of matter;  x – space coordinate normal to the section. 

The differential equation of diffusion dynamics is derived from (n1), 

and for one-dimensional medium, at constant Di , reducing to [2]:   

2

2

i i
i

y y
D

t x

 


 
  (n2) 

In multicomponent systems the Stefan-Maxwell model (1867-1871) is 

more commonly used because it considers the molecular collisions 

among the different types of gas molecules [3]:  

1

n
i j j ii

j s i j

y J y Jd y
,

dx C D


   

1y y
B

t x x

   
  

   
 (n3) 

For the description of evolution of dispersed particles population the 

Fokker-Planck equation (1914-1917) is usually used that is named also as 

convection-diffusion equation [4]:  

   
2

2

( ) 1
( ) ( ) ( ) ( )

2

f x
F x f x D x f x

t x x

  
 

  
 (n4) 

where  f (x)  – probability density function of particles velocity;  F(x), 
D(x)  – drift and  diffusion coefficients. 

The mobility of atoms and ions in solids (metal, alloy, oxide, etc.) is 

also interpreted as diffusion phenomena. Frenkel (1926) [5] has 

presented diffusion process in condensed matter as an ensemble of 

elementary jumps and quasi-chemical interactions of atoms and defects. 

Eyring [6] applied his theory of absolute reaction rates to this quasi-

chemical representation of diffusion. Such application of mass action law 

for diffusion leads to various nonlinear versions of Fick's equation. 

Assuming that all particles can exchange their positions with their closest 

neighbors, Gorban et al. [7] have derived following nonlinear equation: 

 Δ Δi
i j j i i j

y
D y y y y

t


 


 (n5) 

where ∆ is the Laplace operator. 
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Gorban with coworkers have developed general approach to nonlinear 

multicomponent diffusion based on the idea of the reaction mechanism 

borrowed from chemical kinetics [7]. Just their works gave rise to the 

development of the model that is presented in this paper. 
 

2.  Diffusion coefficient 

 

The main parameter in all diffusion models is the diffusion 

coefficient, or diffusivity (D, cm
2
/s). It depends on temperature, pressure 

(in gases), and on molecular characteristics of diffusion medium. The 

dependence of diffusion coefficient on these parameters for gases is 

usually expressed using Chapman-Enskog theory (1939), particular by 

Hirschfelder formula [8]: 
1 2

1 5

2

1 1
/

.

ij
i jij ij

A T
D

M MP 

 
  

 
 

 (n6) 

where  T – temperature; P – pressure;  – collision integral; – 

Lennard-Jones' interaction constants;  M – molar mass.  

The diffusivity in liquids is ~10
4
 times lower than in gases. For 

Brownian particle in dilute solutions the equation of Stokes-Einstein 

(1906) is valid: 

6
i

i i

k T
D

r 
  (n7a) 

where  k – Boltzmann constant;  r – particle radius;  – solvent viscosity.  

More general equation was proposed by Wilke and Chang (1955) that 

is widely used for calculation of diffusivity in various liquid mixtures [9]:  

   
1 2 3 5/ /

ij j i
j

T
D A M V




  (n7b) 

where    – characteristic constant of solvent;  V  – molar volume.  

Diffusion in solids is considered as Frenkel jumps of atoms (ions) and 

vacancies, so that diffusivity Ds characterizes the intensity of jumps [10]:  

2 m
S o

B

E
D f d exp

k T


 
  

 
 (n8a) 

where  f  – correlation factor;  d – jump distance;  vo  – frequency of 

atoms vibration;  Em  – height of potential barrier (migration energy);  

kB – Boltzmann constant.   
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Similar formula was suggested even early by Dushman and Langmuir 

(1922) and is also widely used for calculating diffusivity in metals [11]: 

2

S
A

Q d Q
D exp

N h RT

 
  

 
 (n8b) 

where  NA  – Avogadro's number;  h – Planck's constant;  Q – activation 

energy of self-diffusion;  R – ideal gas constant. 

Typical intervals of diffusivity are presented below: 

Diffusivity In gases In liquids In solids 

Di , cm
2
/s 10

–1
10

0
 10

–6
10

–4
 10

–17
10

–11
 

 

3.  Diffusivity in porous structure 

 

In many processes such as adsorption, drying, solid fuel combustion, 

and catalytic reactions, the mass transfer of fluid in porous media is often 

the rate limiting step. Usually, it is interpreted as diffusion process 

undergoing to Fick's law, but with special diffusion coefficient.  

In a single pore, the Knudsen diffusion (1909) takes place when 

collisions of gas molecules with the pore walls dominate, rather than 

intermolecular collisions. Corresponding Knudsen diffusivity is 

expressed as follows [1]:   
1 2

8

3
K

/
pd RT

D
M

 
  

 
 (n9) 

where  dp  – pore diameter; T – temperature; M – molar mass.  

Despite of heterogeneous porous structure, the total mass transfer in 

porous particle is often characterized by an effective diffusivity De , 

which is a lumped parameter. There are several dependences of De on 

such parameters as particle porosity   and tortuosity of pores   [12, 13]:   

2

3
meD D







,   meD D




 ,    1 (1 ) 1m

ba
eD D      

 
(n10) 

where  Dm  – molecular diffusivity;  a, b – empirical constants;   – 

fraction of blocked pores.  
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In bidisperse porous particles, the effective diffusivity depends on Dm 

in macro- and micropores, according to Wakao-Smith model (1962) [14]: 

2 2 1 3

1

M
M M m m

M

eD D D


 



 


   (n11) 

where  Dm , DM  – diffusivity in micro- and macro-pores; m ,M  – 

corresponding porosity.  

During modeling of some processes (drying, adsorption, et al.) the 

effective diffusivity De is calculated by fitting the model to experiments. 

This often requires representing De as a function not only of temperature 

T, but also of concentration C [15, 16]. Three type of such functions, 

proposed by Crank (1953) and Wagner (1968), are linear, hyperbolic and 

exponential [2, 16]: 

   ( ) 1 ( ) 1 ( ) bC
o o oe e eD D T bC , D D T bC , D D T e     (n12) 

In case of drying of porous materials, the estimated diffusion coefficient 

of the system corresponds to an effective moisture diffusivity Dw , which 

includes the effects of moisture content w, temperature T and porosity . 
Several dependences were proposed by Millington-Quirk (1961), 

Kiranoudis (1995) and others [15, 17]:  

2 3/ b/ E/ RT
o o

w
w wD D w , D D e e      (n13) 

The so-called reaction engineering approach to modelling the 

convective drying of food materials is also reduced to diffusivity as a 

semi-empirical function of temperature T  and moisture w, like following 

equation of Chen and Putranto [18, 19]:  

1
b

w o

E w
D D exp

RT w

   
   

   

. (n14) 

Temperature dependence D(T) is usually exponential, like (n8, n13, 

n14), and is a natural because it based on Arrhenius equation. But when 

diffusivity depends on concentration D(C) or D(w), it means that Fick's 

model of diffusion is not adequate to experiment, and should be revised. 

 Possible reasons for such occurrences are: (i) polydisperse structure 

of porous material; (ii) several types of diffusion in particle (molecular, 

Knudsen, surface, configurative); (iii) phase transition of fluid in pores 

(condensation – evaporation).  
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Another approach is based on assumption of heterogeneous porous 

structure and on models of multi-phase mass transfer. Such models are 

applied successfully for drying of fruits because are based on their 

cellular structure [20, 21]. Authors postulate two phases of moisture: (i) 

free liquid water inside intercellular space; (ii) bound water within the 

cell structure. An interaction of these types of water within the 

macroscopic multiphase model is taken as a Mass Action Law (MAL).  

Gorban et al. [7] have developed quasi-chemical models of nonlinear 

multicomponent diffusion and special tools in order to provide the 

systematic construction of the nonlinear diffusion equations with 

significant interaction between components. They have proposed also the 

suitable equations for Fick’s diffusion and for Cell-jump formalism, as 

well as complex balance conditions for MAL application in diffusion.  

Based on these approaches and experimental data [22], we have 

proposed the model of moisture diffusion in polydisperse porous 

particles. The drying of polypropylene powder was studied, where the 

porous structure was filled with heptane.  

The model of drying has been derived assuming three types of 

moisture inside porous particles that correspond to three sizes of pores.  

 

4.  Experiments  

 

For the study of moisture diffusion the polypropylene porous particles 

were used, obtained in slurry polymerization process where heptane is 

used as a solvent. Thus, heptane plays the role of “moisture”. The range 

of particles diameter (dp) was 50–500 m, and the range of moisture 

concentration (w) was 10–20 % wt.  

Drying kinetics experiments [22] were carried out by Prof. Mészáros-

Szécsényi in University of Novi Sad, using TG–DTA thermal analysis on 

equipment Q600 SDT from TA Instruments. Measurements were made 

in nitrogen atmosphere (flow rates: 20 and 100 cm
3
/min), with sample 

masses of 2-4 mg and heating rates of 5, 10 and 20 °C/min using alumina 

sample pan. One experiment was carried out under stepwise isothermal 

(SWI) conditions with a heating rate of 10 
o
C/min.  

The dependences of solvent evaporation on temperature at different 

heating rates are presented by the corresponding TG and DTG curves in 

Figs. 1(a,b), while the enthalpy changes accompanying the heating of the 

samples is depicted by the DSC curves in Fig. 1(c).  
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Fig. 1(a). TG curves measured at different heating rates [22].  
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Fig. 1(b). DTG curves measured at different heating rates [22].  
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Fig. 1(c). DSC dependences at different rate of heating [22].  
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5. Formulation of classic model  

 

The model of drying process in thermogravimetric experiments is 

based on the following scheme:  
 

 

 

 

 

 

 

 

Differential mass balance of moisture in sample of polymer powder:  

[Rate of the mass decreasing]  =  [Rate of moisture removal with gas] 

 ogpol yyF
td

wd
G   (1) 

and in gas phase flow: 

   yySkyyF
td

yd
V ssmogg   (2) 

Gpol – mass of polimer, mg;  w – relative moisture of powder;  Fg – gas 

flow rate, cm
3
/min; Vg – gas volume, cm

3
;   yo , y – inlet and outlet gas 

humidity, g/cm
3
;  ys – humidity near particle, g/cm

3
;  Ss – cross section 

of pan, cm
2
;  km – mass transfer coefficient (from the sample to gas 

phase), cm
3
/cm

2
 min. 

Balance equation for the gas phase near particles surface: 
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Vs  – volume of sample in a pan, cm
3
;  rp – radious of  particle, cm;   

Dw , DL – moisture diffusivity in particle and in liquid, cm
2
/s;  

s – voidage of sample; ap  – specific surface area of particles, cm
2
/cm

3
;   

p – particle porosity;  p – tortuosity of the particle.  
 

Process in gas phase is much faster than in particles, so we can 

consider that the drying proceeds in a quasi-steady regime:  

dy/dt  dys /dt  0.  

It means that the change of moisture in gas slaves to the dynamics of 

moisture inside particles. Therefore, for the modelling only one equation 

is sufficient: 

 
prr

pssw
rd

wd
aVD

td

wd



 1   (4) 

Because of small particles diameter (50 to 500 m), the diffusion flux in 

(4) one can approximate by the expression of linear driving force:  

  prrr
rwwrdwd

p



  (5) 

wr  – moisture of particles in equilibrium with gas humidity, mg/mg. 

Then, an equation for drying rate takes the form:  

 r
p

p
w ww

r

a
TD

td

wd
 )(   (6) 

Since the diffusivity in liquid DL depends on temperature, we can 

write for effective diffusivity:  

1 1D po
w L

o p

E
D (T ) D exp

R T T





  
    

  
   (7) 

Equation (6) with formula (7) represent the model of drying dynamics 

of porous powder in laboratory pan in thermogravimetric experiments. 

The temperature increased linearly with time in experiment T=To+bt , 

i.e. the rate of heating was constant. Thus, it is convenient to present the 

drying rate Fig. 1(b) as a function of time Fig. 2.  

There are no difference in two experiments at Fig. 2(a,b) except rates 

of heating, and initial moistures wo. Therefore, all model parameters     

(ap, rp, DL, ED, p, p) should be the same. That is why the quality of 

description is not acceptable.  
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Figs. 2(a,b). Rate of drying [22]. Points – experiment; lines – equations (6-7). 

There are only two possibilities to improve the description: (i) to 

include the concentration dependence of diffusivity, which will be 

empiric; (ii) to change the model of diffusion. 

Let us formulate the new non-empiric model on the base of quasi-

reaction driving force of moisture diffusion inside particles with 

heterogeneous porous structure. 

 

6. Nonlinear quasi-reaction model  

 

Polymer particles have various porous structure, depending on 

polymerization conditions, such as a catalyst type, electron donor, 

concentration of H2, etc. In our case the porous structure looks like at 

micrographs from Scanning Electron Microscope (SEM) Fig. 3. 

Most authors consider the polymer particle growing during 

polymerization (macro-particle) as aggregate of smaller particles (micro-

particles, or globules), with a crystallite of catalyst inside [23, 24].  

Such a model formally corresponds with bidisperse structure of 

porous materials. Thus, we can consider that two types of pores take 

places in particle: macropores, and micropores.  

Therefore, we can assume that "three types of liquid" take places in 

wetted particle distinguished by their localization (Fig. 4), and thus, by 

the rate of diffusion – fast, slow and configurational.  
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Fig. 3. SEM micrographs of porous structure of polypropylene particles [24]. 

 

 

 

 

 

 

 

Fig. 4. Schematic model of polypropylene particle wetted by heptane [22]. 
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The moisture of particle (w) one can express via the volume of liquid 

(Vw), of pores (Vv), of particle (Vp), and of polymer in it (Vpol). Because of  

Vv / Vp = p,  and  Vpol  = Vp (1–p ), we can write:  

pol

w

pp

w

pol

w

pol

w

pol

w

V

V

V

V

G

G
w









)1( 
  (8) 

The volume of liquid (Vw) is then a sum of volumes of "three types of 

liquid" in the corresponding pores (Vw =  Vi  xi ), where ( xi ) is a degree 

of filling the corresponding structures with liquid.   

 
1

(1 )

w
mac mac mic mic pol pol

p p

mac mac mic mic p pol

V
V x V x V x

V V

x x x  

   

   

 (9) 

mac , mic  – portion of macro-, and micro-pores;   

xmac , xmic , xpol  – degree of filling the pores and the polymer with liquid.  

It is important that mac  + mic = p , and i  values remain unchanged 

with drying, because they characterise the particle porous structure. As 

for partial moisture (xi), each changes in the interval from 0 to 1. 

With (9), the equation (8) for total moisture becomes as follows:  

 
1

(1 )
1

w
mac mac mic mic p pol

pol p

w x x x


  
 

   


 

(10) 

Diffusion fluxes for partial moisture xi we write using quasi-chemical 

reaction approach in Onsager form: Ji = Σ Li Xji . The driving force Xji  has 

a nonlinear expression, like in cell-jump diffusion [7] or in Langmuir 

adsorption kinetics. In our case Xji = xj (1–xi) where xj is a degree of 

saturation by moisture of one type of pores, and (1–xi) is an emptiness of 

the nearby pores.  

   1mac
mac mac r mic mic mac

d x
x x x x

d t
        (11) 

   1 1mic
mic mic mac pol pol mic

d x
x x x x

d t
           (12) 

 1
pol

pol pol mic

d x
x x

d t
     (13) 
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Mass-transfer coefficients i  (min
–1

) are defined similar to (6) and (7): 

1 1 p po i
i i

o p p

aE
(T ) D exp

R T T r






  
    

  
   (14) 

According to the model, the moisture diffusion starts from macro-

pores. Because xr in (11) is proportional to equilibrium moisture wr , the 

diffusion continues until saturation of the gas phase or until emptying of 

macropores. The diffusion from micropores is possible only toward 

macropores if they are not filled.  

The „liquid“ in a polymer (xpol )  is a consequence of polymer swelling 

in the presence of monomer, oligomers and solvent. It is a very small 

value but can influence the drying of polymer at high temperature [25].   

The model gave a good prediction of the experimental drying rates at 

different operating conditions and moisture contents (Figs. 5, 6).   
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Fig. 5(a,b). Drying dynamics [22]. Points – experiment; lines – model (10-14). 

 

Comparison Fig. 5 and Fig. 2 shows that the new quasi-reaction model 

provides an excellent description of experiments, in contrast to the 

classical model. Fig. 6 provides additional confirmation of the model 

quality.  

That is a special experiment with a stepwise temperature rise and the 

result of its simulation by the proposed model. The red line represents the 

total drying rate (removal of moisture from the powder sample):  
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1

n
i

i

i

d xd w
A

d t d t




  ,     
100

1

w

pol p

A


 



 (15) 

At this figure we can see also the dynamic behaviour of each local 

moisture wi (in each type of pores): 

i iw Ax ,

      

 
1

1
n

i
j i i i j

i , j

d x
x x

d t
 



       (16) 

 j i  – stoichiometric matrix of interconnections of pores types.   
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Fig. 6. Drying at SWI [22]. Points – experiment; lines – model (10-14). 

 

The blue line represents the drying rate of macropores, green line - 

micropores, and violet line - solidification of polymer. 

The process begins with diffusion of moisture from macropores into 

gas phase:  –mac (xmac – xr). This "unlocks the door" for the moisture that 

is in the micropores: –mic xmic (1– xmac), because diffusion from 

micropores cannot begin until the macropores are occupied. Similarly, 

the diffusion of moisture from the polymer –pol xpol (1– xmic) cannot 

begin until the micropores are occupied.   
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Let us consider now parameters of the model that are listed in Table. 1. 

First of all, type of moisture in fact is a type of pores. Characteristics of 

porous structure are measured parameters. They include the fractions of 

each pore type (i), pore radii (rp), total porosity (p), and tortuosity (p). 

Well known methods, widely used in study of porous materials, are 

Mercury Intrusion Porosimetry, and Nitrogen Adsorption. All these 

parameters are measured in polypropylene production, and in its drying 

in fluidized bed [24, 25].  
Only parameters such as diffusion coefficients (Di

o
) and activation 

energies (Ei) were determined by describing the experimental data given 

above. Their values are typical for the diffusion of liquid heptane in a 

bulk and in porous materials. All parameters of model do not depend on 

moisture concentration, but only on porous structure, which does not 

change in drying process. In fact, this is the main advantage of quasi-

reaction model. 

Table 1. Parameters of quasi-reaction model. 

Pores and  

 moisture (i ) 

Pores  

fraction ( i ) 

Di
o

 , cm
2
/s  

at 100 
o
C 

Aktiv. energy 

 Ei , kJ/mol 

In macropores 0.60 4.0e-05 12 

In micropores 0.35 2.0e-06 25 

In polymer 0.05 7.0e-08 20-30 

Porosity: p = 0.1–0.2         Tortuosity:  p = 4–5 

 

7.  Final comments 

Dependence of the diffusion coefficient on concentration is erroneous 

in principle if we use the Fick's diffusion law. 

It appears when we try to describe the process of mass transfer by 

equation of Fick, which is strictly correct only for uniform medium.  

One of possible way to describe such processes is a quasi-reactions 

approach, where the driving force is expressed according to action mass 

law, for example as in  adsorption or in cell-jump formalism.  

In application to moisture diffusion in porous bidisperse particle, the 

process is considered as a flowing of moisture from macropores to gas 

phase, and from micropores to releasing part of macropores. 
The model demonstrates a good description of experiments, and was used 

for optimization of industrial dryer with multizone fluidized bed. 
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ABSTRACT 

 

Stability analysis of reaction systems is described by the 

application of the Stoichiometric Network Analysis to the three-variable-

autocatalator. Although simple, this model is complex enough to describe 

complex forms of nonlinear dynamics phenomena, like mixed-mode 

oscillations and chaos. Therefore, stability analysis of such model is not a 

trivial task. Using the Stoichiometric Network Analysis for this purpose 

makes the process clear and leads to the reliable result. 

The method is described briefly in few general steps and all of 

them are further clarified through the application to the chosen example. 

First, the reaction rates in steady state are decomposed to contributions of 

independent pathways, called extreme currents. Then, linearized operator 

is constructed. Finally, through the analysis of the principal minors of the 

essential part of this operator, simple stability criterion is identified. 
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1. Introduction 

 

Reaction systems are wide but specific class of dynamical systems where 

state variables are usually concentrations of some reactive species. In these 

systems the contributions of the individual reaction rates to the overall rate 

of changes are governed by the stoichiometric relations between mentioned 

species. [1] The number of individual reaction rates (reaction steps) can be 

more or less large. In biochemical reaction systems it is generally very large. 

[2] Hence, the stability analysis of such systems is also specific and require 

use of adequate tools like the Stoichiometric Network Analysis (SNA). [3] 

 In models of reaction systems, various rate laws [4] may be used, but 

mass action principle is the most common. It is based on fundamental 

principle, that the rate of reaction is proportional to the concentrations of the 

reacting substances. As a result, rates of individual steps are power 

functions of concentrations as the state variables, and overall rates are 

obtained as linear combinations of such simple monomial terms. 

Nevertheless, final expressions are nonlinear as a rule. Moreover, the 

number of independent variables (the concentrations of independent species) 

and number of related equations that describe their evolution in time, may 

be very large. 

Numerical simulations based on efficient algorithms for integration 

of systems of ordinary differential equations are often the best way to 

analyze dynamical states of the reaction systems. However, the main model 

parameters – rate constants of all individual reaction steps are generally 

unknown. Therefore, more general approach is required to evaluate possible 

dynamic states depending on unknown values of the rate constants. SNA is 

probably unique tool that may provide such general results on so complex 

objects as reaction systems are. Large number of reaction steps and reaction 

species may be limiting for application of the SNA, but several 

approximations, specific only for SNA, are available to attain some result on 

instability condition even for very large systems with dozens of reactions 

and reaction species. 

Analytical expressions for the instability condition can be easily 

calculated as a function of the rate constants, and then tested by comparing 

them with the results of the numerical simulations obtained for selected 

parameter values. [5] For this purpose, bifurcation analysis may lead to 

crucial results. [6] 
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 Simple model known as three variable autocatalator will be used to 

illustrate the method. [7] 

 

 
2. The model 

 

Our examinations are illustrated on a reaction model known as three-

variable-autocatalator. [7] This model consisting of five reaction species (R, 

X, Y, Z and P) and six reactions having rate constants ki where i = 0, 1, ... 5, 

is given in Table 1. The system may readily be reduced since P is only the 

product of the reaction which does not influence the rate of any reaction 

step. We will also assume that reactant R is in large excess so that changes 

in its concentration may be neglected and dynamical state of the system 

depends just on its initial value as a control parameter. Hence, only three 

variables remained (concentrations x, y and z of species X, Y and Z, 

respectively). 

 

Table 1. The three-variable-autocatalator reaction network model [7] 
 

0R X
k

 0 0 0v k r  (M.0) 

1X Y
k

 1 1v k x  (M.1) 

2X+2Y 3Y
k

 
2

2 2v k x y  (M.2) 

3Y Z
k

 3 3v k y  (M.3) 

4Z P
k

 4 4v k z  (M.4) 

5R+Z X+Z
k

 5 5 0v k r z  (M.5) 

 

The dynamics of the model can be represented by set of ordinary 

differential equations: 

 

0 1 2 5
d

d
   x v v v v

t
 (1) 

1 2 3
d

d
  

y
v v v

t
 (2) 

3 4
d

d
 z v v

t
 (3) 

 

and if we use rates of reaction steps from Table 1 set of differential 

equations has the form: 
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2

0 0 1 2 5 0
d

d
   x k r k x k x y k r z

t
 (4) 

2
1 2 3

d
d
  

y
k x k x y k y

t
 (5) 

3 4
dz

d
 k y k z

t
 (6) 

 

Species Z does not change the concentration in reaction (A.5) since 

it appears there both, as reactant and product.  

From equations (4)-(6), we can calculate steady-state concentrations: 

 
2

0 3 4 0 4 5 0
SS 2 2 2 2

1 3 4 5 0 2 4 0 0

( )

( ) ( )




 

k k k r k k r
x

k k k k r k k k r
 (7) 

4 0 0
SS

3 4 5 0( )




k k r
y

k k k r
 (8) 

0 0
SS

4 5 0




k r
z

k k r
 (9) 

 

 The stability analysis of three variable system can be performed by 

several methods. However, the stability analysis of a system with more than 

four variables can be done only by SNA. Nevertheless, we intend to present 

the stoichiometric network analysis with its advantages on three variable 

system for pedagogical purpose.  

 

 

3. Stoichiometric network analysis of considered model 

 

Stability analysis of complex nonlinear reaction mechanisms is very 

complicated task. For models that have large number of independent 

intermediate species, the classical tools for studying the stability conditions 

are quite ineffective. To avoid this problem it is necessary to use specialized 

methods. At present, the most powerful one is the stoichiometric network 

analysis (SNA). [3, 8] 

In SNA, the kinetic equations of any stoichiometric model presented 

by a set of differential equations (such as (4), (5) and (6)) is written in the 

matrix form: 
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 Sc v  (10) 

 

where ċ is the time derivative of the m×1 concentration vector c comprising 

the change in concentrations of m independent intermediate species, known 

as internal ones in SNA. S is the stoichiometric matrix and v the so-called 

reaction or flux vector with reaction rates as components. The 

stoichiometric matrix S is an m×n matrix where n is the number of reactions 

in the reaction network (in the model considered m = 3 and n = 6.). The Sik 

element of the stoichiometric matrix corresponds to the stoichiometric 

coefficient of reactive species i (i = 1,2, ..., m) in reaction (Rk) 

corresponding to column k and row i. The reaction vector v is 1×n vector 

whose elements describe the reaction rates. 

Using the matrix representation given in equation (10), the model 

given in Table 1 corresponds to the following system of differential 

equations: 
 

0

1

2

3

4

5

M.0M.1M.2M.3M.4M.5

1 1 1 0 0 1

0 1 1 1 0 0

0 0 0 1 1 0



 
 
 
   

    
   

   
 
  

v

v

v
c

v

v

v

  (11) 

 

Row above the matrix S in equation (11) indicates correspondence 

between matrix columns and reactions in the model, and it is not part of the 

matrix. 

Now, we want to obtain information about the interplay between the 

concentrations of independent intermediate species and the dynamics of the 

network as a whole. As a first step, we look for conditions where the 

network is in a quasi-steady-state. The rates at a steady state vss are solutions 

of the relation: 

 

0 ss S v  (12) 

 

Equation (12) represents system of homogenous equations, and we 

need to find all positive solutions. Method for finding all positive solutions 

of equation (12) depends on the size of examined model. For simpler 
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models equation (12) can be solved manually. However, if the number of 

reactions is large, solving equation (12) becomes much more complex, and 

only suitable way is to use computer programs based on algorithms 

developed for this purpose. There exist several algorithms. [9-13] 

The solutions of (12), known as extreme currents [3, 8], are reaction 

pathways in steady state. They offer important information about the 

consistency of the model, and correlations between individual reactions like 

mutual exclusion or coupling. [14] The extreme currents Ei are usually 

presented as the columns (in any order) of a new extreme current matrix E. 

In the case considered, it is: 

 

1 2 3 4E E E E

1 1 0 0 M.0

1 0 1 0 M.1

0 1 0 1 M.2

1 1 1 1 M.3

1 1 1 1 M.4

0 0 1 1 M.5

 
 
 
 
 
 
 
 
  

E  (13) 

 

As before, row above and column beside the matrix E in equation 

(13) indicate correspondence between matrix rows and reactions and 

between matrix columns and extreme currents, and they are not part of the 

matrix. 

In any specific steady state, each extreme current contributes to 

reaction rates with its own, distinct, extent. The contributions of the extreme 

currents, denoted as the current rates ji, are given as the components of the 

corresponding vector j. Elements of vector j are nonnegative numbers. The 

basic equation of the SNA gives relation between rates at a steady state vss,k 

and current rates jk: 

 

ssv Ej  (14) 

 

Using equation (14), the particular vss,k can be written in the form: 

 

,0 0 0 1 2  ssv k r j j  
(15) 

,1 1 SS 1 3ssv k x j j  
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2

,2 2 SS SS 2 4  ssv k x y j j  

,3 3 SS 1 2 3 4    ssv k y j j j j  

,4 4 SS 1 2 3 4    ssv k z j j j j  

,5 5 0 SS 3 4  ssv k r z j j  

 

The next step in our analysis is to examine stability of a steady state. 

In other words, we should like to find instability condition. The stability 

analysis of the particular steady state is usually performed on the linearized 

form of the general equation of motion of a system around the steady state. 

Namely, when the system is in a steady state little perturbation of the 

concentrations of intermediate species can be given as linear deviation from 

the steady state concentrations. [15] 

 

ssc c c   (16) 

 

We can expand time derivative of concentration vector c in Taylor 

series near a steady state css and keep leading terms only. Hence, 

 
d d( ) d

d d d

ssc c c c
c

t t t

  
   M  . (17) 

 

The leading term M is Jacobian matrix which in SNA has the form 

 
( , ) diag( ) diag( )ss ss TM S Kh v v h   (18) 

 

where diag(h) is a diagonal matrix whose elements hi are the reciprocal of 

the steady state concentrations of the species i, for i = 1, 2, 3, and K is the 

matrix of the order of reactions with its transpose K
T
. Hence, the stability is 

defined by the sign of the real part of the eigenvalues of the Jacobian matrix. 

A general derivation of Jacobian matrix M is given in references [8] and 

[15]. For the model under consideration, matrix K is: 

M.0M.1M.3M.4M.5M.6

0 1 1 0 0 0 X

0 0 2 1 0 0 Y

0 0 0 0 1 1 Z

 
  

 
  

K  (19) 
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As usual, row above and column beside the matrix K in equation 

(16) indicate correspondence between matrix rows and reaction species and 

between matrix columns and reaction steps, and they are not part of the 

matrix. 

According to equation (14), the equation (18) can be transformed to 

 
( , ) diag( ) diag( )ss  TM S E Kh j j h  (20) 

 

The matrix M written as a function of the SNA parameters ji and hi 

has particular advantages for the stability analysis since these parameters are 

non-negative and each element of M is linear function of j and h parameters, 

which is an essential feature of the SNA. The steady-state stability is 

determined by the sign of eigenvalues of M, which are the roots  of the 

characteristic polynomial: [16] 

 

0

n
n i

i

i

   



 I M  (21) 

 

where, for considered model, n = 3. If real parts of all eigenvalues are 

negative a steady state is stable. If one or more eigenvalues has positive real 

parts the steady state is unstable. The number of eigenvalues with positive 

real parts can be determined by Routh - Hurwitz criterion. According to this 

criterion the number of eigenvalues with positive real parts is equal to the 

number of the sign changes in the Routh array [16]  

 

32
1

1 2 1

R 1, , , , , n

n

  
  

   
 (22) 

 

where Δi, i = 1,…,n, is i-th Hurwitz determinant, defined as the determinant 

of the leading principal minor of the Hurwitz matrix H, where leading 

principal minor of dimension i is matrix constructed from the first i rows 

and columns of matrix H. 
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1 3 5 7 2 1

2 4 6 2 2

1 3 5 2 3

2 4 2 4

1 3 2 5

1

0

0 1

0 0

0 0 0 0

n

n

n

n

n

n

    

   

   

  

  













 
 
 
 
 

  
 
 
 
 
 

H  (23) 

 

Obviously, 0i   for i n . Steady state is stable if all Hurwitz 

determinants are positive. If there is only one sign change in the Routh array 

(22), this indicates that only one eigenvalue has positive real part. Such 

instability occurs when the largest Hurwitz determinant changes its sign 

keeping all others positive, and this point presents saddle-node bifurcation. 

From Hurwitz matrix (23) we can see that the largest Hurwitz determinant 

Δn can be written as 

 

1n n n     (24) 

 

Since the sign of the largest Hurwitz determinant is in this case 

determined by the sign of the largest coefficient of the characteristic 

polynomial
n , the saddle-node bifurcation can be identified from [16]  

 

0n   (25) 

 

The Hurwitz matrix gives us also condition for appearance of 

Andronow-Hopf bifurcation which is of great importance, because it is 

source of oscillations in the system. The Andronow-Hopf bifurcation occurs 

when: [16, 17] 

 

1 0n   (26) 

 

For considered model where n = 3, the Hurwitz matrix is  
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1 3

2

1 3

0

1 0

0

 
 


 
  

 



 

H  (27) 

 

and condition for appearance of Andronow-Hopf bifurcation given in 

equation (26) is 

 

1 3

2 1 2 3

2

0
1

 
     

 

 
  


 (28) 

 

Application of an instability condition obtained by this method 

becomes limited by the number of independent internal species and it is 

often very difficult to be determined by classical procedure, but this method 

is convenient for numerical evaluation of stability of steady state. Much 

simpler method to examine the steady-state stability is the use of the matrix 

of current rates V(j), where: 

 
( ) diag( ) TV S E Kj j  (29) 

 

The steady state is considered to be unstable if there is at least one 

negative diagonal minor of V(j). [8] Although it is an approximation, this 

criterion often gives satisfactory results. The matrix V(j) for the model 

considered is 

 

1 2 3 4 2 4 3 4

1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4

2 2 ( )

( ) ( ) 0

0 ( )

j j j j j j j j

j j j j j j j j

j j j j j j j j

      
 

       
 
        

V j  (30) 

 

We examined all diagonal minors and detected those with negative 

terms, since only these minors can be negative. They are negative when 

polynomial obtained from corresponding determinant is negative. The 

calculated polynomials have to be compared between one another, the core 

of instability must be recognized, and essential one ought to be selected. 

The aim is to find the polynomial with less possible order. Such obtained 

polynomials are expressed in function of ji. In the case considered the 
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selected polynomial is coming from the minor corresponding to the second 

and third rows-columns: 

 
2 2 2 2

1 3 2 4 1 2 3 42   2  +    +    < 0  j j j j j j j j  (31) 

 

It may be transformed to 

 
2 2

1 3 2 4(  + )   < (  + )j j j j  (32) 

 

Since all ji parameters are non-negative condition (32) can be 

rewritten as: 

 

1 3 2 4 +   <   + j j j j  (33) 

 

According to (15) instability condition (33) becomes 

 
2

1 ss 2 SS SS  <  k x k x y  (34) 

 

which is equivalent to 

 

1
SS

2

  >  
k

y
k

 (35) 

 

Inserting (8) into (34) we obtain 

 

4 0 0 1

3 4 5 0 2

  >  
( )

k k r k

k k k r k
 (36) 

 

which may be transformed to 

 
1/ 2

1 3 4
0 1/ 2 1/ 2

4 0 2 1 3 5

  >  
+

k k k
r

k k k k k k
 (37) 

 

Equation (37) gives the critical condition, which need to be fulfilled 

for periodic temporal evolution of intermediate species that are involved in 
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dynamics of HPA system model, However, this result is only the 

approximation based on selection of the most significant minors of the 

matrix V(j), which are responsible for the sign of the corresponding 

coefficient in the characteristic polynomial (21). In large number of tested 

models this approximation works very well, even surprisingly well. 

However, in some cases it is not enough and complete condition for 

Andronov-Hopf bifurcation (28) must be used. It may be applicable only in 

the case of small models like the one used here. For the given model it is 

given by: 

 

   

   

   

  

   

3 31 3 2 2

2 1 2 3 1 2 1 2 3 4 1 3 1 2 3 4

2

22

1 2 1 2 3 4 1 2 3 4

2

1 2 3 1 2 3 4 1 2 3 4

22

2 3 1 2 3 4 1 2 3 4

3 32

1 2 3 1 2 3 4 1 3 1 2 3 4

2

2 3 1 2 3

1
h h j j j j h h j j j j

h h j j j j j j j j

h h h j j j j j j j j

h h j j j j j j j j

h h h j j j j h h j j j j

h h j j j

 
  



 
            

 

      

      

      

       

      

   

2

4 1 2 3 4

2

1 2 3 1 2 3 4 3 4 0

j j j j j

h h h j j j j j j

  

     

 (38) 

 

Numerical simulations (Figure 1) were done for three values of the 

parameter r0 and fixed values of rate constants. 
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Figure 1. Numerical simulations of the three-variable-autocatalator 

model given in Table 1. Dimensionless rate constants: k0=40; k1=0.01; k2= 

2.439 10
-3

 ; k3 = 2; k4 = 0.5; k5 = 0.5. Reactant dimensionless concentrations: 

(a) r0 = 0.8; (b) r0 = 0.1; (c) r0 = 0.01. 

 

In Figures 1(a) and 1(c) numerical simulation leads to the stable 

steady state, while in Figure 1(b) periodic oscillations are obtained. 

Accordingly, if Δ2 given in (38) is evaluated with parameter values used in 

Figures 1(a) and 1(c), positive values are obtained and with parameter 

values used for Figure 1(b) negative value for Δ2 is obtained. Hence, two 

bifurcation points of Andronov-Hopf type may be found between these 

extreme cases. However, approximate instability condition (37) predicts 

only one bifurcation value as a function of the r0. This condition is fulfilled 

for both sets of parametar values, in Figure 1(a) and 1(b), and we can now 

say that used approximation was too large. 
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4. Conclusions 

 

The three-variable-autocatalator was submitted to the Stoichiometric 

Network Analysis. Four elementary reaction pathways – extreme currents of 

the model were identified. Linearized operator of the model near the steady 

state was constructed and matrix of extreme current rates V(j) was extracted 

from it as the essential part. From the principal minors of the matrix V(j) the 

instability condition was identified which restricts the ratios between some 

reaction rates at the steady state, and consequently between the parameter 

values. Exact instability condition was identified from the Hurwitz matrix 

and it was validated by numerical simulations. 
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ABSTRACT 

 

Nonlinear dynamics of two biomolecules is studied. These are a 

microtubule and DNA molecule. Two mathematical procedures are 

explained, yielding to three kinds of solitary waves moving through the 

systems. These waves are kinks, modulated solitary waves called 

breathers and bell-type solitons. 

 

1. Introduction 

 

Biomolecules are nonlinear systems due to inevitable presence of weak 

chemical bonds. Namely, strong interactions yield to small amplitudes 

and we can assume that intensities of attractive and repulsive forces are 

equal. This means that these interactions can be modelled by harmonic 

potential energies, i.e. by functions of the type 2)( kxxf  , where 

const.k  Its first derivative is a force, obviously a linear function, 

which brings about a linear differential equation (DE). As for weak 

interactions, they should be modelled by enharmonic potential energies, 

which yield to nonlinear DEs. 

Two examples are studied in this article. These are microtubule 

(MT) and DNA. The structure of DNA is known. It consists of two 

mutually interacting strands. Each strand is a series of covalently 

interacting nucleotides. A covalent bond is the strongest chemical 

interaction, which means that the strands are linear structures.  
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The strands are connected by weak hydrogen interactions and, of course, 

DNA as a whole is a nonlinear system. 

MT is a long hollow cylindrical polymer structure that spreads 

between a nucleus and cell membrane [1,2]. Its surface is usually formed 

out of 13 long structures called protofilaments (PFs), as shown in Fig. 1. 

Each PF represents a series of electric dipoles called dimers, whose mass 

and length are m = 1.8 x 10
-22 

kg and l = 8nm, respectively [3,4]. The 

lengths of MTs vary from a few hundred nanometers up to meters in long 

nerve axons [5]. The longitudinal, tangential and radial components of 

electric dipole moment are: 337Debyezp  , 198Debyep   and 

1669Debyerp   , respectively [6]. Hence, 
zp  is in the direction of MT. 

 

 

 

Fig. 1. Microtubule 

 

A head-to-tail binding of dimers, resulting in PFs, appear to be much 

stronger than those between adjacent PFs [7,8]. This means that a single 

PF can be seen as a linear system and modelled by the harmonic potential 

energy. On the other hand, the interaction with the remaining dimers is 

usually modelled by the function of the type cxbxaxxF  42)( , 

where 0a , 0b  and 0c  are assumed. For 0c , the function 

)(xF  is symmetric, corresponding to so-called W-potential energy. 

Therefore, MT as a whole is a nonlinear system.  

It was pointed out that the two biological systems are studied in this 

paper. To model them, two mathematical procedures will be used. They 

are semi-discrete approximation (SDA) and continuum approximation 

(CA). The combinations MT-SDA and DNA-CA are explained in 

Sections 2 and 3, respectively. In Section 4, we deal with DNA-RNA 

transcription, where SDA is used, while Section 5 is devoted to 

concluding remarks. It is interesting that the final results, i.e. the 

solutions of the mentioned DEs, depend on the used mathematical 
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method rather than on the studied system. The SDA yields to modulated 

solitary waves called breathers, while the common solution 

corresponding to the CA is a kink soliton, or kink for short.  

A general procedure is equal for both systems and both mathematical 

procedures. The first step is Hamiltonian. This is nothing but a collection 

of energies, describing existing interactions. We use generalized 

coordinates and well-known Hamilton`s equations to obtain dynamical 

equation of motion. The terms in this equation are forces. Finally, we 

solve this equation using aforementioned mathematical approximations. 

 

2. Tangential model of microtubules and semi-discrete 

approximation 

 

There are a couple of models describing nonlinear MT dynamics. 

Depending on a coordinate which determines a dimer`s displacement 

they can be either longitudinal or angular. Of course, two component 

models are also possible. We can monitor a certain evolution of the 

models through papers [9-17]. Ref. [9] describes the first model, a 

longitudinal one, where W-potential energy was introduced. Its improved 

version, which we call u-model, was described in Refs. [10-12]. It was 

shown that Morse potential may be used instead of the W-one [13]. An 

angular so-called  -model, that does not comprise the W-potential 

energy, was introduced in Refs. [14] and [15], while its improved 

version, including this term, is called a general model [16].  

This section is based on a recently introduced two component model 

that we call a tangential model (TM) [17]. The first that should be 

clarified is the W-potential energy, modelled by the function )(xF , as 

explained above. This function obviously has two minima, which means 

that there are two directions of electric field around which the dimer can 

oscillate. Let the appropriate electric field strengths be 1E


 and 2E


. A 

resultant internal electric field 1 2E E E  , coming from all dimers, is in 

the direction of MT. In principle, the dimer can oscillate around this 

direction, but any displacement would move it towards the directions of 

either 1E


 or 2E


. This means that the dimer’s position in the direction of 

E


 is not stable and corresponds to the maximum of the W-potential 

energy. 
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Fig. 2 shows oscillation of the dimer around 1E


 only. The orientation 

of this field is determined by 001   , which is the angle between the 

direction of the PF and 1E


. A coordinate determining a displacement 

from the direction of 1E


 is  , while the dimer`s position with respect to 

the direction of the PF is  . It is obvious that  

 

  0  
. (1) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. A schematic representation of the dimer’s oscillation 

 

The three components of the electric dipole moment of the single 

dimer were defined above. They are in the direction of the MT ( zp


), 

radial direction (
rp ) and in tangential one ( p ). The model assumes that 

oscillation of the dimer is in the tangential, that is z   plane, which 

means that 021  EpEp rr


 and the relevant moment, used in this 

paper, is 
2 2 391Debyezp p p    [17]. 

The Hamiltonian for a MT can be written as [17] 

  







 

n

nnnnnnn pEC
BAkI

H  cos
4222

1

422

1

2 , (2) 

where n determines a position of the dimer. The first term is kinetic 

energy, the dot means the first derivative with respect to time and 
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I  is a moment of inertia of a single dimer. The second term is the 

potential energy of the interaction between adjacent dimers belonging to 

the same PF in the nearest neighbour approximation, where k  

is the inter-dimer stiffness parameter. The next three terms in Eq. (2) 

represent a non-symmetric W-potential energy, where 0A , 0B  and 

0C  are assumed. This potential determines the directions around 

which the dimer can oscillate. The very last term in Eq. (2) comes from 

the fact that the dimer is an electric dipole existing in the field of all other 

dimers. Of course, p  is an electric dipole moment, while 1E  is our 

arbitrary choice. It is assumed that 0p  and 01 E . 

From Eqs. (1) and (2) and using generalized coordinate nnq   and 

momentum nn Ip  ,  as well as Hamilton’s equations of motion 

n n
q H p   , 

n n
p H q   , we straightforwardly obtain the following 

dynamical equation of motion: 

  0

3

0

2

0011 2 DBCAkI nnnnnnn    , (3) 

where 1

2

00 3 pEBAA   , 610 pEBB  , 00 3 BC   and 

0
3

000  CBAD   [17].  

As was mentioned above, we solve Eq. (3) using the SDA [18]. This 

mathematical procedure was explained including a lot of details in Ref. 

[19]. Its mathematical basis is a multiple-scale method or a derivative-

expansion method [20,21]. 

According to the SDA, we assume small oscillations, i.e. 

n n   ,     1 ,  (4) 

 which changes Eq. (3) into 

  3

0

22

0011 2 nnnnnnn BCAkI    . (5) 

A key point in the procedure is that we expect the solution to be a 

modulated wave, i.e. in the form  

  )O(cc)()()()(Φ 22

20  
 nn ii

n eFFeFt , (6) 

),( tnl   ,        tnqln   ,  (7) 

where ( )F   and ni
e
  represent an envelope and a carrier components, 

respectively. The function ni
e

  obviously includes discreteness, while the 

envelope will be treated in a continuum limit. As the frequency of the 

carrier wave is much higher than the frequency of the envelope, we need 

two time scales, t  and t , for those two functions. Of course, the same 
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holds for the coordinate scales. In Eqs. (6) and (7),   is the optical 

frequency of the linear approximation, 2q  is the wave number, cc 

stands for complex conjugate terms and 0F  is real.  

A rather tedious mathematics [17] shows that the functions 0F  and 2F  

can be expressed through F , that is 
2

0 =F F  and 
2

2 =F F , while F  is 

a solution of nonlinear Schrödinger equation (NLSE). The expressions 

for   and   are given in Ref. [17]. All this brings about a final result 












 








 


L

tVnl
Atnl

L

tVnl
At ee

n sech)cos(sech2)(     

             











 ))(2cos(

2
tnl


, (8) 

where 

ege UVV  ,            
   














 ge qV

Pq
qq

P
U 



 2

12
1

1
. (9) 

The parameters P  and Q  are the dispersion coefficient and coefficient of 

nonlinearity, respectively. They are given in Ref. [17], as well as the 

expressions for A , L ,   and  . The second expression in Eq. (9) was 

obtained based on the idea of a coherent mode (CM) [15,17], assuming 

that the envelope and carrier wave velocities are equal, that is eV . 

Due to the equality of these velocities, the function )(tn  is the same at 

any position n. This tempting idea has been used for years. However, 

recent numerical calculations show that this might not always be the case 

[17]. This interesting problem certainly requires further research. The 

meaning of the parameter   was explained in Ref. [15]. Its allowed 

interval is   

5.00  .  (10) 

To plot the function )(tn  the values of all parameters should be 

known or estimated. This rather tedious job was performed in Ref. [17]. 

The function is shown in Fig. 3 for a certain allowed combination of the 

parameters. This is obviously a localized modulated wave. One can see 

that, for the chosen values of the parameters, the angle   takes the 

values from about  6  to 8 , while the wave covers about 112 dimers. 

The solitonic speed, corresponding to this example, is sm445eV  [17]. 
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Fig. 3. The function )(tn  as a function of n  for ns50t , eV12k , 

lq 7  and 495.0 . The CM is assumed 

     

As a conclusion, we should point out that the model explained here is 

a two component one in a sense that the variable   describes the 

oscillation of the dimer around the direction of the electric field, while   

determines the orientation of the field. The used SDA assumes a 

continuum limit [17]. A question if MT is predominantly discrete or 

continuum system was studied in Ref. [22]. 

The model explained here is obviously a mechanical one, but this does 

not mean that MTs are mechanical systems only. There are experiments 

which indicate electrodynamic activity of variety of cells in the 

frequency region from kHz to GHz, expecting MTs to be the source of 

this activity [4,23]. Therefore, MTs are both mechanical and electrical 

systems and, regarding their modelling, the best that should be done is to 

work towards more component models taking both characteristics into 

consideration. One such attempt is the model introduced in Ref. [24].  

 MTs can also be modelled as nonlinear RLC transmission lines [25-

27]. Electrical activities of MTs are very important in fighting some 

diseases [28]. It is known that MTs can behave as biomolecular 

transistors capable of amplifying electrical information [29]. This may 

affect some crucial neuronal computational capabilities, such as memory 

and consciousness [29,30]. 

 Finally, it might be interesting to mention kinocilium, a component of 

vestibular hair cells of the inner ear, comprising 10 pairs of MTs [31]. 
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This is a sensory apparatus that receives the environmental signals and 

transmit them via collectively excited conformational changes in MTs 

[31]. Of course, this is possible due to the fact that MTs are capable of 

specific type of wave propagation, as explained above. 

  

 

3. Kinks and bell-type solitons in DNA 

 

There are a lot of models describing complex DNA dynamics [32,33]. 

The first nonlinear one was introduced in 1980, suggesting that nonlinear 

effects may focus the vibration energy of DNA into localized soliton-like 

excitations [34].  

In this section, we rely on the well-known helicoidal Peyrard-Bishop 

(HPB) model for DNA dynamics [19,35]. This is an extended version of 

the PB model, which does not take helicoidal structure into consideration 

[36]. It might be important to mention that, in some papers, the HPB 

model is called Peyrard-Bishop-Dauxois (PBD) model. However, there is 

a similar model [37,38] called the PBD one and, consequently, it is more 

convenient to name it the HPB model. 

As was explained above, the first step is Hamiltonian, from which we 

obtain the dynamical equation of motion. In Section 2, we demonstrated 

the SDA for solving it, the method that has been used for years to study 

DNA dynamics [19,35]. However, the CA was used recently [39] and 

this is what we explain in this section.   

Fig. 4 shows a segment of DNA chain. Interactions along the strands 

are strong and the longitudinal displacements are neglected. The relevant 

ones at the position n are 
nu  and 

nv , obviously along the weak hydrogen 

bonds. Keeping all this in mind, we can write the Hamiltonian as 

[19,35,39] 
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, (11)  

where kg104.5 25m  is the average nucleotide mass, a dot means the 

first derivative with respect to time, the parameters k  and K  are 

coupling constants of the harmonic longitudinal and helicoidal springs, 

respectively. The first term obviously represents kinetic energy, the 
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second one is the potential energy of the covalent bond, while the third 

term describes helicoidal interactions. Namely, due to the helicoidal 

structure, a nucleotide belonging to one strand at the position n  comes 

close to the hn   nucleotide from the other strand. We assume 5h  

because the helix has a helical pitch of about 10 base pairs per turn [40]. 

The last term in Eq. (11) is Morse potential energy, describing the weak 

interaction, where the parameters D  and a  are the depth and inverse 

width of the Morse potential well, respectively. 

 
Fig. 4. A short portion of DNA molecule 

 

It is convenient to introduce new coordinates ( ) / 2n n nx u v   and 

2/)( nnn vuy  , representing the in-phase and out-of-phase 

transversal displacements, respectively. In other words, ( )nx t  describes 

oscillation of the centre of mass of the nucleotide pair, while )(tyn  

represents their stretching. From a point of view of DNA activity 

(breathing, transcription, replication,…) the pair stretching is crucial, 

which means that we should see DNA molecule as a collection of 

nucleotide pairs rather than a collection of single nucleotides. 

As was explained above, we use Eq. (11) and the Hamilton`s 

equations of motion, which brings about the following two completely 

decoupled dynamical equations of motion [19,35,39] 

1 1( 2 ) ( 2 )n n n n n h n h nmx k x x x K x x x         , (12) 

)2()2( 11 nhnhnnnnn yyyKyyykym  
     

          
2 2

2 2 ( 1)n na y a y
aD e e

 
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The first dynamical equation is a standard linear discrete equation, whose 

solution is a linear wave (phonon). So, in what follows, we solve Eq. (13) 

to which we add a viscosity force 
ny  on the right side, where   is a 

viscosity coefficient [9,39,41-44]. We use both the CA ),()( txytyn   

and appropriate series expansions, which yields to the following 

nonlinear partial DE  

  02
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y
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where 


A4.3l  is a distance between the two neighbouring nucleotides 

in the same strand,  DaKA 24   and DaB 326  [39]. 

It is well known that, for a given wave equation, a travelling wave 

)(y  is a solution which depends upon x  and t  through a unified 

variable tx   , where   and   are constants. This brings about 

the following ordinary DE [39] 

02   ,        d d    , (15) 

where 

)( BAy  ,  
 

A

Khklm 2222 



 ,  

A


  . (16) 

     There are many procedures for solving Eq. (15). Some of them are: 

standard procedure [9,45], modified extended tanh-function (METHF) 

method [46-48], method of factorization [49-51], procedure based on 

Jacobian elliptic functions [52,53], the simplest equation method (SEM) 

[54-56], modified SEM [57],
 
exponential function procedure [58,59],  

( GG )-expansion method [60,61], etc. Except the standard procedure 

and method of factorization, in all mentioned methods the function   is 

expected to be a seriеs of known functions. However, the series 

expansion in terms of unknown functions is also possible [62,63]. In this 

section, we explain METHF method, probably the simplest procedure 

representing series expansions in terms of known functions. According to 

this procedure, we look for possible solutions of Eq. (15) in the form  

 



M

i

i

i

i

i baa
1

0 ,   (17) 

where the function )(  is a solution of the well-known Riccati 

equation [46-48] 
2 b .  (18) 
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The parameters 
0a , ia , ib  and b  are real constants that should be 

determined, as well as the cut off integer M . One can easily show that, 

for Eq. (15), 2M  [39]. We are looking for the solutions having 

physical sense and assume 

 bb  tanh ,      0ib , (19) 

which is the solution of Eq. (18) for 0b . 

According to Eqs. (17) and (18), we obtain expressions for   ,    

and 2  and Eq. (15) becomes 00

4

4

3

3

2

21  AAAAA , 

where 
iA , 0,...,4i  , are coefficients depending on the parameters b , 

0a , 1a , 2a  and   [39]. Of course, this equation is satisfied if all these 

coefficients are simultaneously equal to zero, which gives a system of 

five equations. This system brings about the following two solutions [39]  

41)1(

0 a , 256 2)1(   , 43)2(

0 a , 256 2)2(   , 
)()(

2 6 ii
a  ,(20) 

while the remaining parameters are common for both of them, i.e.  

5

6
1


a ,        0

144

25
2



b . (21) 

Finally, according to Eqs. (17), (19), (20) and (21), we easily obtain the 

solutions we are looking for 

 ww 2

1 tanhtanh21
4

1
)(  ,   ww 2

2 tanhtanh23
4

1
)(  ,(22) 

where )12(5 w . These functions are shown in Fig. 5 for 125 . 

Numerically and analytically derived kink profiles nicely fit to each 

other. The numerical solutions were generated applying the simple 

Runge-Kutta procedure to Eq. (15), which was firstly transformed into 

the set of two ordinary first order DEs [56]. One can show that 1  

describes a supersonic kink, while 2  corresponds to subsonic one [39]. 

This is related to the parameter  . Namely, Eq. (16) can be written as  

  AcVm 222   ,        mKhklc 222  , (23) 

where V  and c  are the solitonic and linear sound velocities, 

respectively. As A  in Eq. (23) is positive, we conclude that the negative 

  corresponds to the subsonic soliton and vice versa. Some estimations 

of the velocities V  and c  can be found in Ref. [39]. 
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Fig. 5. Solutions )(1   (blue) and )(2   (red) for 125 . The solid 

and dotted lines correspond to the numerically and analytically derived 

kinks, respectively 

 

     It might be interesting to study the solutions of Eq. (15) when 

viscosity is neglected. Applying the same procedure as above for 0  

we obtain the following two solutions [39] 
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Obviously, these solutions are expressed through the parameters )1(

2a  and 
)2(

2a , and they are shown for 
(1) (2)

2 2 3 2a a    in Fig. 6. These are bell-

type solitons. The numerical solutions were generated applying the same 

procedure as for Fig. 5. The functions )(10   and )(20   represent the 

supersonic and subsonic solitons, respectively. 

What has been shown so far is that the kinks and bell-type solitons 

may exist in DNA under certain conditions. A key question is which one 

really, or, at least, very likely exists. In other words, we should deal with 

stability of the mentioned solutions. We have performed a series of 

numerical simulations of Eq. (13) with and without viscosity term [39]. 

Eqs. (22), (24) and (25) represent initial conditions and the system was 

checked during 10ps  [39].  Fig. 7 shows the function )(1 y  
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corresponding, of course, to )(1   in Fig. 5. The function )(2 y  is 

almost indistinguishable from )(1 y , as expected from Fig. 5. Basically, 

this numerical solution matches analytical one but the obtained kink 

decreases in time. 

 

 

Fig. 6. Solutions )(10   (blue) and )(20   (red) for 23)(

2 ia , 2,1i . 

The solid and dotted lines correspond to the numerically and analytically 

derived solitons, respectively 

      

 
Fig. 7. Solution )(1 y  for 122.8 10 kg s    

 

When viscosity is neglected, the solutions (24) and (25) completely 

change their structures in time. An example is shown in Fig. 8. The 

solution 
20( )y  , as well as 

10 ( )y  , is obviously unstable. This should not 

bother us because these functions describe non-realistic case when 

viscosity is neglected. Therefore, if we compare Figs. 7 and 8 we can 
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conclude that the solitons )(1 y  and 
2( )y   are acceptable, while 

10 ( )y   

and 
20( )y   are not. This certainly shows that viscosity is crucial for the 

wave stability. However, our positive attitude towards Fig. 7 should be 

discussed. First of all, the soliton decreases in time, which means that it 

is not stable, at least it is not mathematically stable. However, it exists 

during a certain period of time and, from biological point of view, a 

question is if it can perform a required biological task during its lifetime. 

Let us assume that the kink 1y  lives about ps5.1 , which is suggested by 

Fig. 7. Its speed was estimated to be sm13502 V  [39]. During this 

period of time the kink passes over the distance of about 6 nucleotide 

pairs. This value can be compared with the experimental value for 

RNA:DNA hybrid, which is about 8 pairs [64]. These two values match 

rather well, which means that the kinks )(1 y  and 
2( )y   are biologically 

acceptable. We are going to return to the RNA:DNA hybrid in the next 

section. 

 
Fig. 8. Solution 

20( )y    

    

4. Demodulated standing solitary wave and DNA-RNA transcription 

 

In the previous two sections, we studied two biological systems and two 

mathematical methods. The combinations were MT-breather and DNA-

kink. In this section, we study DNA using the SDA, i.e. the combination 

DNA-breather. Our goal is to study DNA-RNA transcription and it 

turned out that it may be possible within the idea of existence of the 

breathers in the chain [65].  We rely on the HPB model again and follow 

Ref. [65]. 
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    It is known that the transcription occurs at the segments of DNA chain 

that are surrounded by RNA polymerase molecules (RNAP), which is 

shown in Fig. 9 [66,67]. Let us call these segments transcription 

segments (TSs). One can see that one of the two DNA strands serves as a 

template for synthesis of a new RNA strand. It is important to know that 

the transcription is possible because DNA molecule opens locally at 

these segments, which implies significantly smaller coupling between 

base pairs. It was shown that the local opening could be seen as DNA 

breathing mode with extremely high amplitude [68], which, otherwise, 

can be conceived as a resonance mode [69].   

 

 
Fig. 9. DNA-RNA transcription (Taken from Ref. [66]). 

 

The main goal of this section is to study DNA breathing at TSs in the 

context of two ideas. We explain why it would be biologically 

convenient if the soliton were demodulated at TSs. Our second idea is 

that the soliton becomes a standing one at the TSs. Hence, we can talk of 

demodulated standing solitary (DSS) mode. We believe that this mode 

decreases probability for genetic mistakes and yields to successful 

transcription. 

Therefore, we deal with DNA and Eqs. (11) and (13) hold again. We 

use the SDA explained in Section 2, which means that we assume small 

oscillations (
n ny   , 1 ) as well as Eqs. (6) and (7). The final 

result is the function  
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which is, practically, the same as Eq. (8) except that )(tn  has been 

replaced by ( )ny t . Of course, the expressions for P , Q ,   and   are 

different and given in Ref. [65], while Eqs. (9) and (10) hold again. 

Let us get back to transcription and study a certain TS. When DNA 

gets copied into RNA, RNAP attaches itself to one of the two DNA 

strands, as shown in Fig. 9. This means that RNAP pulls nucleotides out 

of solution and form RNA according to DNA order of basis. Therefore, 

we can talk of DNA and RNA nucleotides.  

Let us concentrate on one DNA adenine, for example. Normally, it is 

bonded with DNA thymine belonging to other strand but also interacts 

with RNA nucleotides, as can be seen from Fig. 9. The final positioning 

of RNA nucleotides should be a certain copy of the DNA segment, which 

means that our DNA adenine should attract a certain RNA uracile and 

repel the remaining RNA nucleotides [65]. This can be efficiently done 

only if the DNA adenine is far enough from its DNA partner during 

transcription, which is really the case due to the local opening.   

We argued that the local opening is necessary but not sufficient 

condition for successful transcription [65]. The stretching of DNA, i.e. 

the distance between the DNA nucleotides belonging to the same pair, is 

described by Eq. (26). This obviously means that the respective DNA 

thymine and adenine are far from each other only during short periods of 

time and the chosen adenine does not have enough time to attract one 

RNA uracile. The carrier wave is crucial for soliton movement along 

DNA chain but is redundant when transcription occurs. Also, it makes 

sense to believe that only the envelope of Eq. (26) corresponds to local 

opening. All this suggests that the breather should be demodulated when 

it reaches a TS. This, practically, means that we should get rid of the 

cosine functions in Eq. (26), which means that the conditions 

0 ,             0  (27)  

should be satisfied at TSs [65]. A crucial question is how demodulation 

happens at these segments. A simple explanation is that RNAP changes 

chemical milieu for DNA nucleotides, i.e. the values of relevant 

parameters, especially D  and a , which yields to the values 

accommodating Eq. (27). That DNA surrounding, which is, practically, 

viscosity, can lead to demodulation was shown in Ref. [70]. This section 

could be understood as a mathematical analysis of this discovery. 

One more idea was suggested recently [65]. Both local opening and 

demodulation increases time during which the DNA and RNA 
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nucleotides interact. This is probably not enough but there is one more 

mechanism to increase this time. Namely, this time is bigger if the soliton 

velocity is smaller. Hence, biologically convenient soliton is the one 

which is as slow as possible at the TSs and we have proposed the idea 

that the soliton wave becomes a standing one at these segments. By the 

standing wave we assume the one for which the envelope velocity is 

equal to zero, that is 

0eV .   (28) 

There have been some suggestions how to experimentally determine 

the soliton speed, width and even its character [71,72]. They are based on 

micromanipulation experiments on the single DNA molecule [73-81]. 

Unfortunately, the expressions (27) and (28) have been neither approved 

nor disapproved so far. What theoreticians can do is to study if the DSS 

mode is possible [65]. In particular, we investigate if there exists a 

certain value of q  satisfying Eqs. (27) and (28). We introduce new 

parameters x  and p  defined as kxK   and pkDa 2  [65] and use 

5h , as explained earlier. Both x  and p  should be much less than one 

because k  determines the strong covalent interaction. There are a couple 

of requirements that should be satisfied, such as 5.0 , 0P , 0Q , 

etc. [65]. For each of them we find intervals for ql  satisfying it. For 

example, we plot the function )(qlP  for different values of x  and 

determine the accepted intervals for ql . In the end, we compare all these 

intervals and obtain the final result, which is [65] 
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One can notice an extremely narrow interval for 301x . Such intervals 

do not exist for  7.391x  [65]. Also, the lower limit for ql  does not 

exist for 5.621x  [65].  

Two examples are shown in Fig. 10 for eV07.0D  and mN12k  

[19]. We see the demodulated waves whose amplitudes are  


A1.61 A  

and 


A6.12 A . The appropriate wave widths are l81   and 
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l8.72  , respectively [65]. This means that these waves cover about 8 

base pairs, which perfectly matches the experimental value for the 

DNA:RNA hybrid [64]. Notice close result regarding the kinks in the 

previous section. The big amplitudes are in agreement with the local 

opening of the chain. The solitons in Fig. 10 have almost equal widths 

but their amplitudes vary remarkably. This is so because the amplitude 

depends on the arbitrary and still unknown parameter k . An idea how to 

experimentally determine k  was offered in Ref. [65]. 
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Fig. 10. Demodulated solitary wave for rad47.0ql , 501x  (blue) 

and rad15.0ql , 801x  (orange) 

 

Therefore, we showed that the values for ql , satisfying our postulates 

explained above,  exist. The results are in excellent agreement with the 

experimental values. A patient reader may have noticed that the big 

amplitudes are not in agreement with the HPB model, which assumes 

small amplitudes. This means that the used model predicts the local 

opening but is not adequate for quantitative analysis. Also, viscosity has 

been neglected in this section 

 

5. Conclusion 

Nonlinear dynamics of biological nanosystems is very interesting and 

developing branch of science. We here studied two of them and 

explained two mathematical methods. Nonlinearity has been manifested 

through the solitary waves.  

Internal structures of nucleotides and dimers were neglected. As these 

are relatively big particles, classical physics was used. However, if their 
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internal structures are taken into consideration then quantum mechanics 

becomes relevant. A common example could be ab initio calculations. 

Also, if we study charge transfer processes in these systems we should 

use quantum mechanical approach [82,83]. 
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ABSTRACT 

 

In this chapter, we coupled finite element analysis with deep 

learning approach in order to analyze CT findings associated with 

COVID-19 and infection model of virus spreading inside the lung. 

The spreading model starts from binding to receptors of the host 

cell where the RNA of the virus is uncoated in the cytoplasm. 

Then, transcription/translation processes generate a new viral RNA 

material and proteins. After that, the virus is assembled within 

vesicles followed by virus release and starting to infect other cells. 

We modeled with finite element method the airway coupled 

to a parenchyma model where virus spreading starting from alveoli 

to other parts of airway. The results are compared with observation 

with CT (GGO particularly) for different time (days of patient 

starting infection with COVID-19). Also, these finite element 

simulations are used for training and validated of Unet neural 

network architecture for pneumonia detection. This coupled 

bioengineering and data mining approach can open a new strategy 

for prediction of virus spreading in the specific patients.  

 

 

1.1 Introduction 
 

Up to current knowledge there are three different stages of COVID-19 disease: 

stage I, which stand for a period of asymptomatic incubation with or without 

detectable virus; stage II, which is a period with symptoms that are not severe, 

with the presence of virus and stage III known as stage of severe respiratory 

symptoms with high viral load (Wang et al 2020). 
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In Wuhan, among over 1000 patients analyzed, all the age groups were infected 

evenly, except children and adolescents where the virus appeared only 

occasionally. The results showed that approximately 15% of the confirmed 

cases develop severe phase of the virus, with higher incidence in patients over 

65 (Guan et al 2020). The question remains open regarding the development of 

the severe phase of the virus in some patients, while other remain in milder 

phases. There are two phases of the immune responses induced by SARS-CoV-

2 infection. The first phase comes when a specific adaptive immune response is 

required to eliminate the virus during the incubation and non-severe stages. This 

will preclude disease progression to severe stages. If the patient is generally of a 

good health and if he/she has an appropriate genetic background (e.g. HLA) 

then the patients exhibits specific antiviral immunity. If an immune response is 

not strong, the virus will induce the destruction of the affected tissues, which 

specifically refers to organs that have high ACE2 expression.  This is second 

phase of the virus, when it induces innate inflammation in the lungs that is 

largely mediated by pro-inflammatory macrophages and granulocytes. So, lung 

inflammation leads to life-threatening respiratory disorders (Xu et al 2020). 

With the onset of severe lung damage, efforts should be made to reduce 

inflammation and the symptoms. A good general health did not always show as 

an advantage for patients who acquired the severe stage of the virus. It was 

found that HA has the ability to absorb water up to 1000 times its molecular 

weight. This implies that inhibiting the production of HA may help COVID-19 

patients breathe. Medical staff can give patients medical grade hyaluronidase to 

reduce the accumulation of HA and, consequently, clear the jelly in the lung. 

CT images of patients showed characteristic white patches called “ground 

glass”, containing fluid in the lungs (Wang et al 2020). Shi et al 2020 proposed 

approaches to the treatment of COVID-19 believing that the two-phase division 

is very important: the first immune defense-based protective phase and the 

second inflammation-driven damaging phase. They suggested that doctors 

should try to boost immune responses during the first phase, and suppress it in 

the second. They proposed Vitamin B3 to be used with the start of coughing, as 

a vitamin having highly lung protective function. When breathing becomes very 

difficult, hyaluronidase can be used intratracheally and at the same time 4-MU 

can be given to inhibit HAS2 (Shi et al 2020).  

 

1.2 Method 
 

1.2.1. Image analysis 
 

The SARS-CoV-2 can be specifically detected in respiratory secretions or 

plasma samples RT-PCR. Sometimes, patients with COVID-19 may have 

negative initial RTPCR results. It can be due to insufficient cellular material 
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used for detection or due to improper extraction of nucleic acids from clinical 

materials. Imaging examination can effectively and conveniently observe the 

pulmonary parenchymal abnormalities, solve some challenges associated with 

clinical diagnosis in suspected patients with a false-negative result, especially 

symptomatic patients with dyspnea and respiratory distress. Radiological 

examination is of great importance in the early detection and treatment COVID-

19 patients. Radiological examinations are relatively easy to perform and can 

produce fast diagnosis. Because COVID-19 infection is caused by the 

unprecedented SARS-CoV-2, there are only few related imaging studies. 

Among the studies that have been conducted, multifocal consolidation or 

ground-glass opacity (GGO) was observed on chest radiographs and CT (Lei et 

a 2020, Chen et al 2020, Huang et al 2020).  

The virus is developing fast and it has varying symptoms. Consequently, 

there is a need to systematically analyze the chest CT findings associated with 

this disease, for the prevention and control measures. According to Fleischner 

Society recommendations, there are several observations which can be detected 

in CT examination of COVID-19 patients. There are: 

 GGO (appears as hazy increased opacity in the lung, with the preservation of 

bronchial and vascular margins), consolidation (appears as a homogeneous 

increase in pulmonary parenchymal attenuation that obscures the margins of 

vessels and airway walls),  

 crazy-paving pattern (appears as thickened interlobular septa and intralobular 

lines superimposed on a background of GGO),  

 halo sign (appears as GGO surrounding a nodule or mass) (Wormanns and 

Hamer 2015, Hansell et al 2008).  

There are also a reticular pattern, nodules, rounded opacities, cavitation, a 

crazy-paving pattern, an air bronchogram, a halo sign, bronchial wall 

thickening, a subpleural curvilinear line, and pulmonary fibrosis. 

New coronavirus (COVID-19) has some unique features – the tests to prove a 

patient being positive use polymerase chain reaction (PCR), however, infected 

patients with pneumonia may have specific patterns that are only moderately 

characteristic for the human eye on chest X-ray and computed tomography (CT) 

images (Ng et al 2020). COVID-19’s transmission rate depends on the capacity 

to identify infected patients reliably with a low rate of false negatives. 

Additionally, a false positive should be reduced as much as possible as it is 

required to avoid further burden on the healthcare system by putting patients to 

unnecessary quarantine. All this shows that proper infection control is necessary 

and timely detection of the disease would help the supportive care, which is 

necessary for the patients affected by COVID-19. 

In January 2020, a paper was published with COVID-19 clinical and 

paraclinical feature details by a Chinese team of researchers. Abnormalities in 

chest CT images with most bilateral involvement are present (Huang et al 
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2020). Intensive care unit (ICU) patients on admission show multiple bilateral 

lobular and subsegmental areas of consolidation as the typical findings in chest 

CT images (Huang et al 2020). In comparison, chest CT images of non-ICU 

patients show bilateral ground-glass opacity and subsegmental areas of 

consolidation (Huang et al 2020). These patients express bilateral ground-glass 

opacity with resolved consolidation in later chest CT images (Huang et al 

2020). Some indications show that COVID can be better diagnosed using 

radiological imaging (Fang et al 2020, Ai et al 2020).  

The major characteristics of COVID-19 are GGO, followed by GGO with 

consolidation, rounded opacity, a crazy-paving pattern, and an air bronchogram. 

Although pathological changes in COVID-19 patients’ lungs have not yet been 

studied, recent studies have reported that it is closely related (with 88% identity) 

to two bat-derived severe acute respiratory syndrome (SARS)–like 

coronaviruses, with approximately 79% homology with SARS-CoV and 

approximately 50% homology with MERS-CoV (Zhou et al 2020, Lu et al 

2020).  

Pathological changes of SARS patients include injury to pulmonary epithelial 

cells, hyaline membrane formation on in the inner wall of the alveoli, and a 

large number of tissue cells and mass thrombi formed by proliferative fibrous 

tissue that block the small airway and air cavity (Koo et al 2018). These 

pathological changes may be the main pathological basis of the CT findings, 

especially the GGO. 

 

 1.2.2 Spreading of COVID-19 virus 

 

There are three ways in which virus can spread in tissues: virus transport, virus 

multiplication in host cells and the virus-induced immune response. It is well 

known that cytotoxic T cells remove infected cells with a rate determined by the 

infection level. The mathematical model consists of reaction-diffusion equations 

which describe the different regimes of infection spreading. It can be directed of 

a low level infection, a high level infection or a transition between both are 

determined by the initial virus load and by the intensity of the immune response. 

Viruses are non-cellular organisms who need cells to replicate their genomes 

and produce progeny. They will expand locally around the entry site of a newly 

infected organism, depending on the mode of transmission. The virus could not 

divide itself automatically (Zhai et al 1997). As an organism consisted by 

certain special nucleic acid and protein, the denaturation of virus can be 

regarded as a temperature dependent rate problem, just as any natural 

substances do. It is very important to understand COVID-19 replication cycle 

(Fig. 1.1) and its interactions with the immune system. This cycle contains four 

stages. The first stage is the binding to receptors of the host cell where the virus 
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RNA is uncoated in the cytoplasm. The second stage is transcription/translation 

processes which generate new viral RNA material and proteins. The third stage 

is virus assembly within vesicles followed by virus release. The fourth stage is 

infecting of other cells. 

 

 
Fig 1.1. Replication Cycle of COVID-19. The process starting from binding to receptors 

of the host cell where the virus RNA is uncoated in the cytoplasm. Then 

transcription/translation processes generate a new RNA material of the virus and 

proteins. Then virus is assembled within vesicles followed by virus release and starting 

to infect other cells. 

 

There are several approaches of virus spreading where the target cell model 

has served to represent several diseases such as HIV, Hepatitis virus, Ebola 

(Nguyen et al 2015, 2017), influenza (Baccam et al 2006, Hernandez-Vargas et 

al 2014, Pawelek et al 18), among many others. One of the detailed references 

for viral modelling can be found in Hernandez-Vargas et al 2019. Zou et al. 

2020 presented the viral load in nasal and throat swabs of 17 symptomatic 

patients. COVID-19 replication cycles showed to last longer than flu. The 

period lasts about 10 days or more after the incubation period (Anderson et al 

2020, Zou et al 2020). Here, we contribute to the mathematical study of 

COVID-19 dynamics at within-host level based on data presented by (Wolfel et 

al. 2020). We used ordinary differential equations (ODEs), based on the viral 

kinetics data reported by Woelfel et al. 2020 in infected patients with COVID-

19. Viral load was sampled from throat swab cultures and measured in 

Copies/mL, g Swab, at Log10 scale. In order to make a quantitative 

recapitulation of experimental data Differential Evolution (DE) algorithm (Storn 

and Price 1997) was applied. 
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1.2.3 Exponential Growth and Logarithmic Decay Model  
 

Based on the experimental data (Woelfel et al 2020), the viral dynamic is 

divided into two parts, exponential growth (Vg) and decay (Vd) modelled by 

equations (1) and (2), respectively.  
𝑑𝑉𝑔

𝑑𝑡
= 𝜌𝑉𝑔 

(1.1) 

𝑑𝑉𝑑
𝑑𝑡

= −𝜌𝜇𝑉𝑑 

(1.2) 

It is assumed that the growth of the virus starts at the onset of symptoms, 

with initial viral concentration Vg(0). The parameter  is the growth rate of the 

virus. The parameter  quantifies the decay rate of the virus, while Vd(0) the 

initial value of the virus in decay phase. The mathematical model used here to 

represent coronavirus dynamics is based on the target cell-limited model 

(Hernandez-Vargas et al 2019, Perelson 2002, Ciupe and Heffernan 2017). 

Coronavirus can replicate in a variety of cell types, including epithelial cells. 

The coronavirus infection model is as follows: 

 
𝑑𝑈

𝑑𝑡
= −𝛽𝑈𝑉    (1.3) 

 
𝑑𝐼

𝑑𝑡
= 𝛽𝑈𝑉 − 𝛿𝐼    (1.4) 

 
𝑑𝑉

𝑑𝑡
= 𝑝𝐼 − 𝑐𝑉    (1.5) 

 

The states of host cells can be susceptible (U) and infected (I). Viral particles 

(V) infect susceptible cells with a rate  ((Copies/mL)-1 day-1). When the cells 

are productively infected, they release the virus at a rate p (Copies/mL day-1 

cell-1) and virus particles are cleared with rate c (day-1). Infected cells are 

cleared at rate  (day-1) as consequence of cytopathic viral effects and immune 

responses. Coronaviruses infects mainly in differentiated respiratory epithelial 

cells (Tyrrell and Myint 1996). Previous mathematical model for influenza 

(Hernandez-Vargas et al 2014) has considered about 107 initial target cells 

(U(0)). Initial values for infected cells (I(0)) are taken as zero.  

 

1.2.4 Physiology of human respiratory system 

 

The human respiratory system consists of two lungs irrigated with fresh air 

through a dyadic structure called the tracheo-bronchial tree. The respiratory 

muscles are around the lung. These muscles contract during inspiration creating 

lung expansion, and relax at expiration resulting in lung deflation. Lung 
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physiology and mathematical modeling of ventilation are given in (Bates 2009), 

(Vannier 2012) and (Viebel 1963). The fresh air is reach with dioxygen (O2) 

which goes through the lung. When O2 comes to alveola, it exchanges with 

vascularization. Further it dissolved into blood to supply body tissue. In the 

other direction, carbon dioxide leaves blood circulation, passing through the 

lung in opposite direction and exhaled to the air. Tracheo-bronchial tree in 

human is a non-symmetric dyadic branching structure. The starting point is 

trachea, that split into two airways irrigating the right and left lung. It contains 

approximately 24 generations (Viebel 1963). Airway dimensions started from 

upper airways with centimetric diameter up to 15 networks of millimeter size 

airways. In the first 17 generations, the air flow is convective; in lower branches 

of the tree, Reynolds numbers are low and the flow regime is diffusive. There 

are about 30000 acini, which are dyadic terminal sub-trees. They end in alveolar 

sacs where gas exchange takes place. Three hundred millions alveoli 

representing an exchange surface of about 100 m2 (Bates 2009). 

 

 
 

Fig 1.2. Schematic of the human respiratory system, from extra-thoracic 

components to alveoli, and cast of human airways 

 

1.2.5 Finite element method for airway and lobes 
 

On a macroscopic level, airflow into and out of the lung is driven by pressure 

differences between the alveoli and the outside environment. Activity of the 

muscles surrounding the parenchyma induces lung volume variations while 

breathing. Lungs are divided into units called lobes that are not mechanically 
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attached and can slide with respect to one another. The human left lung contains 

two and right lung contains three lobes. Our model is the airway coupled to a 

parenchyma model (Figure 1.3). Upper airways geometry is segmented from a 

CT scan. This framework is used to mimic virus spreading from alveoli to other 

airway geometry. We have been used around 500,000 finite elements to model 

both airway and lobes (Filipovic at el 2012, 2013, Tsuda et al 2008, 2012). 

(Figure 1.3).   

 

 
 

Fig. 1.3. Finite element mesh of upper airways with the lung mesh and all lobes 

 

1.3 Results  
1.3.1 Simulation of virus spreading 

 

Our initial simulation results taken into account virus exponential growth (Vg) 

and decay (Vd) equations (1) and (2) with dynamics infection model defined by 

equations (3-5) after 5 and 10 days (Figure 1.4). The red color object occupied 

virus. When virus propagates through airway system through alveoli they 
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connect to their wall and cause high ACE2 expression.  It induces innate 

inflammation by pro-inflammatory macrophages and granulocytes and makes 

liquid in the alveoli space and bronchi. It seems that liquid can be seen in CT 

images as GGO. Our simulation mimic several days of this severe process 

which can cause the growing of the space which liquid occupies inside the 

airway system. This process takes a several days. We compare our finite 

element simulation with spreading COVID-19 with CT finding as GGO 

particularly (Figure 1.5).  

 

   
 

Fig. 1.4. Simulation of spreading of COVID -19 virus after 5 days and 10 days of 

infection starting. The red object simulates virus spreading inside lobes and airways. 

 

 
 

Fig. 1.5. Results of virus spreading and comparison with CT images. Comparison of 

finite element simulation of virus spreading and CT findings (GGO particulary) 
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1.3.2 Deep learning with X-rays and CT images 

 

There are several challenges related to the implementation of deep learning for 

detecting pneumonia from X-ray images. Kaggle database provides 1GB of 

chest X-Ray images of patient with pneumonia (Kaggle 2019). More into the 

specifics of the task, there are datasets updated every day related to CT (Kaggle 

2020) and X-ray images of patients with COVID 19 and non-COVID-19. 

Additionally, the White House prepared the COVID-19 Open Research Dataset 

(CORD-19) with leading research groups. CORD-19 contains over 50000 

articles, majority of which is with full text, about COVID-19, SARS-CoV-2, 

and related coronaviruses. This data base is free for the research community to 

apply recent advances in natural language processing and other AI techniques in 

order to produce new insights in support of the ongoing fight against this 

infectious disease (kaggle.com). GitHub also has its database with chest X-ray 

or CT images for COVID-19 patients, as well as for other viruses such as 

MERS, SARS, and ARDS (GitHub 2020). Taking into account all the available 

datasets, in addition to the dataset from the Clinical Centre Kragujevac, one 

solid dataset can be created in order to investigate the COVID-19 presence in 

images. An example of two X ray images infected with COVID-19 virus 

admitted to Clinical Centre Kragujevac are given in Fig. 1.6.  

 

       
 

Fig. 1.6. Two examples of X ray images of patients form Clinical Centre Kragujevac 

infected with COVID-19 

 

In order to overcome some of the drawbacks of the mentioned traditional 

methods, deep neural networks are introduced and they have started to make an 

impact on all aspects of computer vision including medical image analysis 

starting form image to image translation (Shiri et al 2019a), image 

reconstruction (Shiri et al 2019b), as well as super resolution image generation 

(Shiri et al 2019c). It has been concluded that convolutional neural networks 

(CNNs) are able solve various segmentation problems very well in the area of 
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deep learning-based method including US image segmentation challenges 

(Moradi et al 2019). This is mainly because of its strong capability in image 

feature extraction and shift invariance characteristics. Because of the fact that 

U-net showed promising results in segmentation of various tissues in medical 

images, we propose the use of U-net in segmentation and classification of 

COVID-19 cases.  

U-net neural network architecture for COVID-19 pneumonia detection that 

that is proposed is shown in Fig. 7. This architecture has proven to be applicable 

to various medical image segmentation issues (Moradi et al 2019, Ronneberger 

2015). The U-net consists of contraction path and expansion path. Contraction 

path consists of two 3x3 convolutional layers and 2x2 max pooling. This can 

help to extract more advanced features and it reduces the size of feature maps. 

Expansion path consists of consecutive 2x2 up-conv and two 3x3 convolutional 

layers. This recovers the size of segmentation map, but with loss of the 

localization information. After each up-conv, we have concatenation of feature 

maps. This helps to give localization information from contraction path to 

expansion path. Because fine-grained features may be lost in down-sampling 

stage, there are cross-over connections used by concatenating feature maps that 

are equally sized. After scale removal in images, as well as patient data in 

corners of the image, resulting images were of size 708 x 708 pixels. We 

propose the network with convolutions filter size of 3 × 3. The network requires 

a fixed size input which will be determined later, depending on the resolution 

and size of the dataset available. The images can be resized depending on the 

problem definition and demand for computer power. Pixel intensities of the X-

ray images used as masks will be rescaled to a range (0, 1).  

Neural network will be implemented using Python Tensorflow and Keras 

(Tensorflow 2019). The training process is presumed to last for about 10 

epochs, stochastic gradient descent, learning rate and regularization factor will 

be varied to determine the most suitable one. ReLU activation function will be 

used. The data is fed to the network, which then propagates along the described 

paths (contraction, expansion, and concatenation). The final result is a binary 

segmented image. 



 

 

 

 

 VIRUS COVID-19 SPREADING 195 

 
 

 
Fig. 1.7. U-net architecture (Smistad et al 2017) - Downward and upward parts show 

downsampling and upsampling, respectively. The straight cross over connections are 

represented with dashed arrows 

 

Available dataset will be divided into training, validation and testing datasets 

in a ratio yet to be determined. By data augmentation, it is possible to increase 

the size of the training set allowing the network to observe more diversified data 

points. If necessary, additional images can be created by data augmentation 

using mirroring, scaling, zooming and flipping.  

Additionaly, beside segmentation purpose, the aim is to label the output 

belonging to one of the categories 1-5 which will mark degree of illnes. Also, 

healthy subject data will be avalable, meaning that the methodology should be 

able to distingush bteween the non-covid and covid images.  

For the evaluation metrics, segmentation accuracy of the proposed automatic 

method will be compared to the manual segmentation. General practice is to use 

dice similarity coefficient D (Lin et al 2003) to calculate the overlapping 

regions between the automatic segmentation marked as S and the ground truth 

marked as G: 

  (1.6)

  

  

Other evaluation metrics can be used, i.e. Hausdorff distance H, which is 

calculated in millimeters: 

 (1.7) 

where represents the distance from contour point  in G which is 

the closest to the contour point in S. O and M represent the number of pixels on 

the contours G and S, respectively.  

2 S G
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S G






 i [0,O 1] i [0,M 1]max max (i,G,S), max (i,G,S)H d d   

(i,G,S)d i
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Jaccard coefficient (JC) is calculated similarly to DM and is generally used to 

compare the similarity and diversity of two segmented areas. It is defined as the 

number of pixels of the intersected area, divided by the number of pixels that 

represent the union area  

  (1.8) 

For the evaluation of the label matching, confusion matrix and statistical 

measures precision, recall, F1 score and accuracy has been used.  
 

 

1.4 Discussion and conclusion 
 

In this chapter we analysed CT findings associated with COVID-19 which has 

been detected as GGO, consolidation, crazy-paving pattern and halo sign. Also 

Xrays images are analysed from local hospital in Clinical Center in Kragujevac, 

Serbia. U-net neural network architecture for pneumonia detection has been 

proposed. The infection model of virus has been mathematically defined. Once 

cells are productively infected, they release virus at some rate and virus 

particles are cleared with another rate. Infected cells are cleared at rate  (day-1) 

as consequence of cytopathic viral effects and immune responses.  

We modeled with finite element method the airway coupled to a parenchyma 

model. The results show virus spreading starting from alveoli to other parts of 

airway. The idea was to match observation with CT (GGO particularly) for 

different time (days of patient starting infection with COVID-19). Also these 

finite element simulations can replace a number of images for training and 

validated Unet neural network architecture for pneumonia detection. This 

coupled approach can open a new strategy for prediction of virus spreading in 

specific patients. Further analyses are necessary to go into this direction. 
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ABSTRACT 
 

We can find dynamics in every field of science, including economics, 
chemical reactions, physiology or neurodynamics, showing its intrinsic 
interdisciplinarity. The interactions between the parts of a system and their 
feedback mechanisms constitute a source of nonlinearity and complexity, 
which added to the sensitive dependence on initial conditions, hallmark of 
chaotic behavior, lead to a crucial change of perspective with serious 
consequences in the understanding of science. Relevant problems such as the 
three-body problem in celestial mechanics, turbulence in fluid dynamics, 
irreversibility in statistical physics; or the logistic equation in population 
dynamics, have been at the origins of this fascinating field of nonlinear 
dynamics, chaos, and complex systems. A knowledge of its origins, as well as 
the many schools of mathematics and physics that have contributed to its 
development, allow us to better understand the discipline and the breadth of its 
many applications to science. 

 
 

1.   Introduction 
 
Nonlinear dynamics is the discipline that aims to study nonlinear 

dynamical systems, which are those systems defined by one or more variables 
evolving with time where the response is not proportional to the stimulus. 
Chaos is one of the three kinds of motion, in addition to the periodic and 
quasi-periodic motions. Naturally, there are as many dynamical systems as 
there are variables that have a temporal evolution, which gives us an idea of 
the interdisciplinary nature and scope of nonlinear dynamics [1-4].
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Many of the ideas and concepts of complexity, such as a science of 
complex systems, pose a real challenge for the integration of various 
disciplines, among which we must point out nonlinear dynamics and chaos 
theory, statistical physics, stochastic processes, information theory, network 
theory, engineering science, life sciences, and computer sciences. This listing is 
naturally not complete, but it gives an idea of the challenge behind the idea of 
complexity. This intended goal means more than the idea of crossing 
disciplinary boundaries, but rather to integrate disciplines in a common 
background. 

Much has been discussed in recent years about a fruitful dialogue 
between different scientific disciplines, not only to solve old problems, but also 
as a source of inspiration for new problems. For the study of complexity this is 
one of the fundamental elements, since its object of study covers problems 
related to both the so-called hard and soft sciences. Complex systems exist in 
biology, chemistry, physics, sociology, economics, etc. In any case, the true 
dialogue between disciplines so necessary for the advancement of knowledge of 
complex systems in particular, and of science in general, is still lacking. 

Different paths that have led to the understanding of chaos as we 
understand it today. Among them, I like to point out: (1) The logistic map and 
population dynamics (2) Nonlinear oscillators (3) The three-body problem in 
celestial mechanics (4) Turbulence in fluid dynamics and (5) Irreversibility in 
statistical mechanics. All of them will be discussed throughout this article. 

 
2.   Nonlinear Dynamics and Deterministic Chaos 

 
 As previously discussed, dynamics is the science that studies the 
variation in time of different variables, that is, its motion. Basically, there are 
three types of motion: stationary and equilibrium; periodic and quasi-periodic; 
and finally chaotic motion. Considering the notion of motion in a broad sense, it 
is easy to understand that we can find dynamical systems in any scientific 
discipline. That is why it is customary to say that one of the characteristics of 
nonlinear dynamics is its interdisciplinarity, since with its methods we can 
approach the study of many different phenomena that evolve over time. 

We use the term "nonlinear" to logically contrast it with the term 
"linear", since the linear approach is the one traditionally used in science due to 
its mathematical simplicity. The linear approach implies the assumption of 
properties such as: (1) Proportionality: small causes cause small effects (2) 
Additivity: the whole is equal to the sum of its parts (3) Replication: the same 
action under the same conditions produces the same result and (4) clear 
relationships between cause and effect: it is enough to know a little about the 
behavior of a system to fully know it. 

However, when nature's relationships are not linear, it leads us to very 
different situations. A proportional relationship between two variables x and y, 
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where y = kx, indicates a linear relationship. Therefore, any relationship 
between two variables that does not respond to a proportional relationship like 
the previous one will be nonlinear. It is easy to figure out that most dynamical 
systems are nonlinear. 

When there are relationships of nonlinearity, there can be chaotic 
behavior that has the following properties: (1) There is no proportionality: small 
causes can cause large effects (2) Emergence: additivity does not exist, so the 
whole is greater than the sum of its parts (3) Sensitive dependence on initial 
conditions: which can make that the same experiment can never be reproduced 
exactly; and finally (4) Nonlinearity that can generate instabilities, 
discontinuities and unpredictability, which requires flexibility, adaptability, 
dynamic change, innovation and reaction capacity. 

Possibly one of the deepest ideas about the nature of what is known as 
chaotic behavior is the idea of sensitive dependence on the initial conditions. 
That is, trajectories of a chaotic system move away from each other as time 
progresses when they start from very close initial points. This fact has very 
drastic consequences on the predictability of a system. 

From this viewpoint, it is somehow surprising to read the following 
sentence from the Chapter XIV of The Origin of Species (1859) [5] by Charles 
Darwin: 
 
"More individuals are born than can possibly survive. A grain in the balance 
will determine which individuals shall live and which will shall die, which 
variety or species shall increase in number, and which shall decrease, or finally 
become extinct",  
 
that in a certain sense shows already the true notion of sensitive dependence on 
initial conditions. 

In this regard, it is also interesting to bring up a famous rhyme 
traditionally associated with Benjamin Franklin, although antecedents of the 
same idea date back to the 15th century, and which is known as "For Want of a 
Nail " as shown in Fig. 1. 
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Fig. 1: The rhyme "For Want of a Nail..." offers an intuitive and poetic image of 
the idea of sensitive dependence on initial conditions, which is the hallmark of 
chaos. 
 

We can define chaotic behavior or chaos as a type of motion that is 
derived from deterministic temporal dynamics of simple systems that can in fact 
be described in terms of few variables and whose fundamental characteristics 
are: (1) Being irregular in time, and given its nonlinear character, of course, 
cannot be the superposition of periodic motions, being in fact of aperiodic 
nature and bounded (2) Be unpredictable in the long term and very sensitive on 
the initial conditions and (3) Be complex, but ordered in the phase space, 
presenting a geometry of a fractal nature. If we compare the chaotic motion with 
the regular motion, we can say that the latter is repetitive, periodic, predictable 
and with a simple geometry, while the former is irregular, unpredictable and 
with a complicated geometry. 
 There are different types of chaotic motions. It is fundamentally called 
permanent chaos when once a dynamical system finds this state it remains in it 
forever. On the other hand, it is called transient chaos when this chaotic 
behavior occurs only in a certain period of time and the system subsequently 
behaves differently. Furthermore, dynamical systems generally distinguish 
between dissipative and conservative based on whether or not they conserve 
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energy. Well, for dissipative systems permanent chaos occurs in what is called a 
chaotic attractor in the phase space. However, in the case of transient chaos, 
chaotic transients occur in a fractal set. In the conservative case, on the one 
hand, permanent chaos occurs in bounded regions of the phase space and 
transient chaos is associated, for example, with the phenomenon of chaotic 
scattering that occurs in numerous physical phenomena, giving rise to very 
complex fractal structures. These concepts will be explained in more detail 
throughout the article. 

Dynamical systems are usually classified as discrete and continuous 
depending on whether time is measured discretely or continuously. A paradigm 
for discrete dynamical systems is the logistic map, defined as 
 

, 
 

which is an iterative equation where the index n indicates an iteration that is 
linked to the discrete way of measuring time. Figure 2 shows a Feigenbaum 
bifurcation diagram corresponding to the logistic map, where the final state of 
the system is displayed as a function of the variation of parameter r. 
 

 
 

Fig. 2: Feigenbaum bifurcation diagram corresponding to the logistic map. It 
indicates how the final state of the system varies depending on the value of 
parameter r. 

xn+1 = rxn (1− xn )
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A paradigm for continuous systems is the simple pendulum (Fig. 3). It 

consists of a body of mass m that hangs on a cord that is in principle 
inextensible and of negligible mass, and whose suspension point moves 
periodically.  

 
 

Fig. 3. Oscillatory motion of a pendulum 
 

In this system, time is measured continuously, and therefore it can be 
modeled, once normalized, using a differential equation such as 
 

. 
 

 This equation contains in addition to the inertia term (the second 
derivative of the position), the friction of intensity µ which is proportional to the 
velocity, the nonlinear sinusoidal term and an external periodic forcing of 
amplitude F and frequency w. If we consider the friction with the air and 
assuming that the suspension point remains fixed, then the motion will 
gradually dampen until it stops in its stable equilibrium position. When the 
suspension point moves periodically, it has the effect of introducing energy into 
the system, causing oscillations to be maintained. However, it is also possible to 
give rise to another type of motion of an irregular and unrepeatable nature on a 
periodic basis, which is chaotic motion. 
 

 
 
 
 
 
 
 

!!x +µ !x + sin x = F cosωt
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Fig. 4. Evolution of velocity over time for periodic and chaotic motions. 
 

Figure 4 indicates the time evolution of the velocity of a pendulum. In 
one of them clearly the periodic nature of the oscillations can be observed, that 
is, after a certain period of time the same motion is repeated. In the other figure, 
however, an irregular behavior is shown, which turns out to be chaotic, where it 
can be observed that the same type of motion is not reproduced after any period 
of time. This is precisely one of the characteristics of chaotic motion, its lack of 
periodicity. 

A simple example of periodic system is the mass-spring system formed 
by a body that is attached by a spring to a wall (Fig. 5). If the displacement with 
respect to the equilibrium position is very small, then the spring recovery force 
is proportional (linear) to the displacement, so that the result of motion is 
regular, oscillatory, and periodic.  
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Fig. 5. Oscillatory motion of a system formed by a body of mass m attached to a 
spring. 
 

When the deformation is greater, the spring recovery force is not linear, 
leading to irregular spring responses. In this situation, the resulting motions can 
be very irregular, and may be chaotic in nature where there are no regularities or 
periodicities and where the long-term predictability is lost. 
 

 
 

Fig. 6: The figure represents the chaotic attractor of the Lorenz system. 
 

Perhaps one of the more well-known chaotic systems is the Lorenz 
system, which at the same time is one of the most studied chaotic systems. 
Figure 6 shows a chaotic attractor of the Lorenz system in phase space. It was 
introduced by the meteorologist Edward Lorenz to study the thermal convection 
in a fluid and by means of computer numerical simulations he was able to 
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observe the property of sensitive dependence on initial conditions, the hallmark 
of chaotic behavior. 

Figure 7 shows the idea of sensitive dependence on initial conditions in 
the Lorenz chaotic system. The figure shows the temporal evolution in phase 
space of two orbits (one red and one blue) whose initial conditions are very 
close. After a certain time, approximately 24 time-units, the corresponding 
orbits start to drift apart, turning out to be very different at long times.  
 

 
 
Fig. 7. Time evolution in phase space of two orbits of the Lorenz system 
initially very close, where the property of sensitive dependence on initial 
conditions is shown. 
 

A very important tool in nonlinear dynamics is the geometric notion of 
phase space. The notion of phase space [6] is attributed to the American 
physicist Josiah Willard Gibbs (1839-1903), who was one of the pioneers of 
kinetic theory and is also considered one of the founding fathers of statistical 
mechanics, a term that he also coined. The concept of phase space plays a 
crucial role in nonlinear dynamics, from whose analysis we can obtain much 
information about a given dynamical system.  

Studying the phase space of a given dynamical system allows complex 
fractal structures to be obtained whose physical consequences are reflected in 
uncertainty when determining the subsequent state of the system (Fig. 8). 

 
3.   A Historical Overview of Nonlinear Dynamics 

 
Throughout the 19th century, certain limitations appeared around the 

myth of determinism. On the one hand, it is essential to have a complete 
knowledge of the initial conditions of the problem. On the other hand, notable 
difficulties arose in solving the dynamics of a physical system made up of a 
large number of particles. The latter led to the introduction of concepts related 
to probability theory in the study of the physical laws of systems made up of 
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many particles, such as gases, liquids and solids, giving rise to the birth of 
statistical mechanics. The founding fathers of the discipline include Ludwig 
Boltzmann (1844-1906), Josiah Willard Gibbs (1839-1903), and James Clerk 
Maxwell (1831-1879). 
 

 
 
Fig. 8. Fractal structures in the phase space of a chaotic nonlinear oscillator. The 
variables of the phase space are the position on the x axis and the velocity on the 
y axis. 
 

Scottish physicist James Clerk Maxwell (1831-1879), is fundamentally 
known for having unified the laws of electricity and magnetism. However, his 
contributions to physics have been among the most prolific in history. Among 
his great scientific work, it is important to mention that he is considered the 
father of automatics and statistical mechanics. However, the role he played in 
the development of modern chaos theory is largely unknown. 

Precisely in one of his writings: Does the progress of physical science 
tend to give any advantage to the opinion of necessity (or determinism) over 
that of the contingency of events and the freedom of the will? from a lecture he 
gave at Cambridge on February 11, 1873 are the following excerpts showing to 
what extent Maxwell was familiar with the idea of sensitive dependence on 
initial conditions, of which we have spoken earlier. 
 
“Much light may be thrown on some of these questions by the consideration of 
stability and instability. When the state of things is such that an infinitely small 
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variation of the present state will alter only by an infinitely small quantity the 
state at some future time, the condition of the system, whether at rest or in 
motion, is said to be stable; but when an infinitely small variation in the present 
state may bring about a finite difference in the state of the system in a finite 
time, the condition of the system is said to be unstable. It is manifest that the 
existence of unstable conditions renders impossible the prediction of future 
events, if our knowledge of the present state is only approximate, and not 
accurate.” 
 

Due to the enormous consequences on determinism in physics that 
quantum mechanics has brought about through Heisenberg uncertainty 
principle, the idea of indeterminism has been directly related to quantum 
mechanics. This has led somehow to consider classical mechanics as completely 
deterministic and predictable, which is not entirely true [7]. 

It is fascinating to corroborate that the idea of sensitive dependence on 
initial conditions was considered in detail by the German physicist Max Born 
(1882-1970), Nobel Prize in Physics in 1954, in an article entitled Is Classical 
Mechanics in fact deterministic? [8]. In it he presented a study of a two-
dimensional Lorentz gas initially proposed by the Dutch physicist Hendrik A. 
Lorentz (1853-1928) in 1905 as a model for the study of electrical conductivity 
in metals. In this model, a particle moves in a plane that is full of hard spheres 
and collides with them so that a small change in the initial conditions will 
significantly alter the trajectory of the particle. This fact led Born to conclude 
that determinism traditionally related to classical mechanics is not real, since it 
is not possible to know with infinite precision the initial conditions of a physical 
experiment. 

Furthermore, in the lecture [9] he gave on the occasion of the awarding 
of the Nobel Prize in 1954 the following words appear: 

 
“Newtonian mechanics is deterministic in the following sense: If the initial state 
(positions and velocities of all particles) of a system is accurately given, then 
the state at any other time (earlier or later) can be calculated from the laws of 
mechanics. All the other branches of classical physics have been built up 
according to this model. Mechanical determinism gradually became a kind of 
article of faith: the world as a machine, an automaton. As far as I can see, this 
idea has no forerunners in ancient and medieval philosophy. The idea is a 
product of the immense success of Newtonian mechanics, particularly in 
astronomy. In the 19th century it became a basic philosophical principle for the 
whole of exact science. I asked myself whether this was really justified. Can 
absolute predictions really be made for all time on the basis of the classical 
equations of motion? It can easily be seen, by simple examples, that this is only 
the case when the possibility of absolutely exact measurement (of position, 
velocity, or other quantities) is assumed. Let us think of a particle moving 
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without friction on a straight line between two end-points (walls), at which it 
experiences completely elastic recoil. It moves with constant speed equal to its 
initial speed v0 backwards and forwards, and it can be stated exactly where it 
will be at a given time provided that v0 is accurately known. But if a small 
inaccuracy Dv0 is allowed, then the inaccuracy of prediction of the position at 
time t is tDv0 which increases with t. If one waits long enough until time tc = 
l/Dv0 where l is the distance between the elastic walls, the inaccuracy Dx will 
have become equal to the whole space l. Thus it is impossible to forecast 
anything about the position at a time which is later than tc. Thus determinism 
lapses completely into indeterminism as soon as the slightest inaccuracy in the 
data on velocity is permitted.” 
 

The American physicist Richard Feynman (1918-1988), who won the 
Nobel Prize for Physics in 1965 (Fig. 9), makes similar reflections in his well-
known book Lectures in Physics [10], where he explains that indeterminism 
does not belong exclusively to quantum mechanics, it is a basic property of 
many physical systems. 

 

 
 

Fig. 9. Richard Feynman (1918-1988), Nobel Prize in Physics in 1965. 
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In section 38-6, entitled "Philosophical Implications", in the first 
volume of his Lectures in Physics, a masterful description of indeterminism in 
classical mechanics is made. The fundamental idea is the uncertainty in 
accurately setting initial conditions to predict the final state of a physical 
system. Finally affirming: "Because in classical mechanics there was already 
indeterminism from a practical point of view". 
 
3.1 Poincaré, the Three-Body Problem and the Birth of Chaos 
 

To understand the three-body problem, we go back to the beginnings of 
modern science with Isaac Newton's works on the gravitational field and the 
universal law of gravitation. The so-called two-body problem basically consists 
of analyzing the motion of a system formed by two bodies that attract each other 
under the action of gravitational forces. Newton solves the problem by reducing 
the motion of the two bodies to the motion of each of them around the so-called 
center of mass, which is a point whose mass is the total mass of the system. 

Later, an attempt was made to solve the three-body problem, which can 
be formulated in a simple way: Let 3 bodies of arbitrary masses m1, m2 and m3 
be mutually attracted by Newton's law of gravitation. Assuming that they can 
move freely in a three-dimensional space and with arbitrary initial conditions, 
determine the evolution of the motion. 
 Despite the simplicity of its formulation, its resolution has caused real 
headaches for many scientists. Among them we may highlight Isaac Newton 
(1642-1727), Alexis Clairaut (1713-1765), Leonhard Euler (1707-1783), Pierre-
Simon Laplace (1749-1827), Joseph-Louis Lagrange (1736-1813), Carl Jacobi 
(1804-1851), George Hill (1838-1914) and Henri Poincaré (1854-1912). 

It is precisely the latter who wrote a famous memoir in 1889 on the 
three-body problem and the equations of dynamics, after winning the prize of 
the contest on the stability of the Solar System that had been summoned by 
King Oscar II of Sweden and Norway on the occasion of his 60th anniversary. 
This competition [11] had been proposed by the Swedish mathematician Gösta 
Mittag-Leffler, who had received it from the German mathematician Karl 
Weiertrass, who had been his teacher, the idea that the contestants write an 
original work facing one of four questions. One of Weiertrass's four questions 
had to do with Celestial Mechanics. The question was born out of a suggestion 
formulated by the mathematician Peter Gustav Lejeune Dirichlet at the 
University of Göttingen, who in 1858 had told his student Leopold Kronecker 
that he had discovered a new method of solving certain differential equations 
and pointed out that by applying them to the equations of celestial mechanics he 
could prove with all rigor that the solar system was stable. The committee that 
evaluated this competition was made up of mathematicians Karl Weiertrass, 
Frenchman Charles Hermite and Swedish Gösta Mittag-Leffler. 
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Subsequently, in 1892, Poincaré published his great work Les Méthodes 
nouvelles de la Mécanique Céleste (Fig. 10) in three volumes where numerous 
new concepts appear that have given rise to the development of the theory of 
dynamical systems, as mathematicians usually call it or nonlinear dynamics, a 
term more used by physicists, as well as other mathematical disciplines such as 
topology. Poincaré is considered to be one of the fathers of chaos theory, as 
many fundamental ideas of the theory are contained in this book. 
 

 
 

Fig. 10. Les Méthodes Nouvelles de la Mécanique Céleste was published by 
Henri Poincaré in 1892. 
 

The general three-body problem is of enormous difficulty and only in 
recent years notable advances have been made, without being definitive. 
However, there is a case that is called restricted, circular and plane, which is the 
one that has been studied by many of the scientists to whom I have previously 
referred. Fundamentally, it is considered that the system is not made up of any 
three masses, but one of them is considered much larger than the others and the 
third of them is of negligible mass compared to the rest. The analogy certainly 
comes from considering systems like the Sun, Earth, and Moon, or Earth, 
Moon, and a satellite, where the approximation of moving in a plane is also 
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correct. In these circumstances and with an appropriate reference system, the 
equations of motion can be found without difficulty, from which a potential is 
derived that gives us an idea of the equilibrium positions in which a third body 
can be found. These are five equilibrium positions that Lagrange found, which 
is why they are currently known as the Lagrange points (Fig. 11). 
 

 
  
Fig. 11. The figure shows the equipotential curves of the restricted three-body 
problem, in this case, Sun-Earth-Moon where the five Lagrange points are 
illustrated. 
 

Knowledge of the Lagrange points is very useful. In fact, at point L1 is 
the Solar and Heliospheric Observatory (SOHO), which is a space probe to 
study the Sun. At Lagrange point L2, the Wilkinson Microwave Anisotropy 
Probe (WMAP) was positioned to study radiation from microwave background 
of the universe, getting it to stay in place with minimal fuel consumption, 
always keeping its sensors pointed away from the Earth and the Sun. The James 
Webb Space Telescope (JWST) is planned to be launched in 2021, which is a 
developing space observatory that will study the sky in infrared frequency, and 
that will orbit around the L2 Lagrange point. 

As pointed out above, Poincaré did not approach the three-body 
problem in a general way, but focused on studying what is known as the 
“restricted three-body problem”, which is a particular case in which it is 
considered that one of the masses is very small compared to the others. In this 
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study he found what he called doubly asymptotic or homoclinic orbits, which 
are characterized by having a homoclinic point in the phase space. The presence 
of one of these points have very serious implications on the dynamic complexity 
of the system. After studying the problem, Poincaré wrote: 
 
“One will be struck by the complexity of this picture that I do not even dare to 
sketch. Nothing is more appropriate to give us an idea of the intricateness of the 
three-body problem and in general all problems of dynamics…” 
 

And it is that when trying to solve this problem he created a method or 
a geometric approximation by means of which he glimpsed that this problem 
had a very complex dynamics that is basically what we now call deterministic 
chaos. 
 

 
 

Fig. 12. French mathematician and physicist Henri Poincaré (1854-1912) 
 

The influence of Poincaré (Fig. 12) on the development of Hamiltonian 
systems is enormous and in this sense it is interesting to mention that his 
witness was taken by the American mathematician George David Birkhoff 
(1884-1944), who coined the term dynamical systems, since in turn it had an 
enormous influence on Edward Lorenz who would rediscover the sensitive 
dependence on initial conditions in the middle of the 20th century. 

Within this stream of thought, and in the American context, it is 
necessary to mention the mathematician Steven Smale (Fig. 13), deserving of 
the Fields medal in 1966 for his great contributions to the theory of dynamical 
systems. It is precisely to him that the concept of Smale horseshoe is due, which 



  
  
  
  
   NONLINEAR  DYNAMICS,  CHAOS  AND  COMPLEX  SYSTEMS   217  

     
  

was an important step in understanding the relationship between the existence 
of a homoclinic point and the notion of deterministic chaos, through the simple 
idea of symbolic dynamics using the so-called Bernoulli shift map. 
 

 
 

Fig. 13. Steve Smale, Fields Medal 1966. 
 

As for the Russian tradition, we must go back to Alexander M. 
Lyapunov (1857-1918), who had been a doctoral student of the famous 
mathematician Pafnuti L. Chebychev (1821-1894), and whose thesis on the 
stability of motion has exerted an enormous influence on Physics. From 
Lyapunov we have inherited concepts such as the stability of dynamical systems 
and also Lyapunov's useful exponents, which help us to characterize when a 
given dynamical system is chaotic or not. 

One of the main schools within the Russian tradition is that of Leonid I. 
Mandelstam (1879-1944), continued by his disciples Alexander A. Andronov 
(1901-1952) and Lev S. Pontryagin (1908-1988). Another key school within 
this same tradition is that of Andrei N. Kolmogorov (1903-1987). All of them 
developed new methods and made notable contributions to the construction of 
nonlinear dynamics as we know it today. 

In the year 1954, at the International Congress of Mathematics that took 
place in Amsterdam, Kolmogorov enunciated a theorem for Hamiltonian 
systems that was subsequently proved by his student Vladimir I. Arnold and by 
the German Jürgen Moser (1928-1999), who has turned out to be of 
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considerable importance. This theorem is currently known as the KAM theorem 
(Kolmogorov-Arnold-Moser) [12] and it has to do with the problem of the 
stability of invariant tori in the integrable systems of Hamiltonian mechanics 
under the action of small perturbations. 

This work, in fact, naturally links with Poincaré's pioneering works on 
celestial mechanics, since he had brought out the idea of the complexity of 
orbits in the three-body problem, and the KAM theorem can be considered as a 
culmination of these ideas. As we have already seen, the stability of the solar 
system is a problem of special importance in celestial mechanics and the KAM 
theorem shows that under certain conditions these orbits remain confined in 
certain regions.  
 
3.2 Complexity in Fluid Motion  
 

The phenomenon of turbulence in fluid motion is one of the most 
spectacular cases of chaotic behavior. Although the fundamental equations of 
fluid motion, the Navier-Stokes equations, have been known since the end of 
the 19th century, it should be remembered that the form of their solutions in 
turbulent regime is not yet known. 
 

 
 

Fig. 14. Edward N. Lorenz (1917–2008) 
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In 1963 the meteorologist at the Massachusetts Institute of Technology 
(MIT) Edward N. Lorenz (Fig. 14) developed a model of three ordinary 
differential equations to describe the motion of a fluid under the action of a 
thermal gradient. When it came to finding numerical solutions with the help of a 
computer, he again encountered the phenomenon of sensitive dependence on 
initial conditions. That is, the system was inherently unpredictable, such that 
small variations in determining the initial conditions led to drastically different 
solutions. 

At the time, very few gave importance to this fact, perhaps because the 
results of Lorenz's work were published with a somewhat cryptic title, 
“Deterministic Nonperiodic Flow” [13], in a meteorology journal and went 
unnoticed by many scientists.  

The theory of the Russian physicist Lev D. Landau, and the German 
Eberhard Hopf that proposed the existence of an infinite set of 
incommensurable frequencies to explain the turbulence, was surpassed in the 
1970s by the theoretical contributions of David Ruelle and Floris Takens, who 
introduced in 1971 the fundamental concept of strange attractor. It is an 
attractive geometric object, different from the previously known cases of 
periodic fixed points, quasi-periodic fixed points or limit cycles, hence the name 
"strange", and which also has a non-integer or fractional (fractal) dimension.  

On the other hand, the development of fractal geometry started by 
Benoit Mandelbrot [14], who had been a student of the French mathematician 
Gaston Julia, has played a fundamental role in the understanding and analysis of 
the complex behavior of nonlinear dynamical systems. In any case, it is 
important not to forget the role played in many aspects of the development of 
nonlinear dynamics by the German mathematician Georg Cantor (1845-1918), 

 
 

Fig. 15. The middle-third Cantor set is one of the simplest fractal sets 
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particularly with regard to the middle-third Cantor set (Fig. 15) and its constant 
appearance in many dynamic problems. This will be discussed in more detail in 
section 3.6. 
 
3.3 Statistical Mechanics, Origin of Irreversibility and Ergodic Theory 
 

Statistical mechanics is an essential part of theoretical physics whose 
purpose is to describe the macroscopic properties of a very large system of 
particles in terms of their averaged properties. It is a discipline that combines 
the basic laws of dynamics for a particle system along with the laws of 
statistics, especially those concerning the law of large numbers. The discovery 
of deterministic chaos has stimulated some physicists to reconsider from a new 
perspective the foundations of statistical mechanics. This is because 
deterministic chaos implies that not only systems with a large number of 
particles, but even deterministic systems with very few degrees of freedom can 
present behaviors that require statistical tools for their study. Many efforts have 
been made during this last century to give a correct interpretation of the 
dynamical origins of irreversibility. Despite all the efforts made to date, there is 
still no general agreement on what are the essential ingredients needed to 
support statistical mechanics. 
 

 
 
Fig. 16. The founding fathers of Statistical Mechanics: Ludwig Boltzmann 
(1844-1906), James Clerk Maxwell (1831-1879 and Josiah W. Gibbs (1839-
1903)  
 

The problem of irreversibility was one of the major concerns of one of 
the "founding fathers" of statistical mechanics (Fig. 16), the Viennese physicist 
Ludwig Boltzmann (1844-1906). The objection raised by Josef Loschmidt 
(1821-1895) to Boltzmann's program, consisting in deriving the laws of 
thermodynamics directly from mechanical behavior, revealed the paradoxical of 
a situation in which, while the laws of mechanics are reversible under temporal 
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inversion, the thermodynamic behavior of the systems is fundamentally 
irreversible. There has certainly been great progress in this century in the 
attempt to clarify the dynamic origin of the kinetic equations, although the 
problem remains to some extent open. Following Boltzmann, the first attempts 
to substantiate classical statistical mechanics were based on the supposed 
validity of the ergodic hypothesis, which, after making considerable theoretical 
efforts, led to a true impasse. 

Following the work of Maxwell and Boltzmann, Gibbs introduced the 
concept of a "Mixing" associated to a system using the simile of an oil drop in 
an immiscible fluid, a small region in the phase space that simulates the oil 
drop, the dynamical evolution would help fill the entire phase space. This idea 
implies that for a given dynamical system, two sufficiently close points would 
separate exponentially after a certain period of time. This concept is linked to 
the notion of sensitive dependence on initial conditions that is at the base of 
chaotic dynamics in nonlinear dynamics and that leads to define the so-called 
Lyapunov exponents [15]. The concept of Lyapunov exponent indicates that if a 
dynamical system has any positive Lyapunov exponent then these initial points 
or conditions would separate exponentially and this type of systems are called 
chaotic systems, since the prediction of the evolution of the system in the long 
term is impossible.  

In this sense, scientists like George Birkhoff (1884–1944) stand out, 
who proposed the ergodic theorem, which was later proved by the German 
mathematician Eberhard Hopf (1902-1983) using the fact of the ergodicity of 
the trajectories on surfaces of constant negative curvature that French 
mathematician Jacques Hadamard had pointed out a few years earlier. However, 
these results had little impact on the foundation of nonequilibrium statistical 
mechanics. 

The importance of the Lorentz gas, which was previously mentioned 
when talking about Max Born, is that it shows thermodynamic physical 
properties, is ergodic and has a positive Lyapunov exponent. The great 
achievement of Russian American mathematician Yakov Sinai, who received 
the Abel Prize in 2014 (Fig. 17), was to show the connection between the 
classical Boltzmann-Gibbs set for an ideal gas and a chaotic Hadamard billiard. 

Ideas from chaos theory have been used for the foundation of statistical 
mechanics, finding deep connections between the dynamical properties of a 
system, such as its Lyapunov exponents and its transport properties. Knowledge 
of both the nonequilibrium statistical mechanics and nonlinear dynamics is 
essential to understand works on nonequilibrium states. Despite numerous 
efforts and apparent new perspectives to support the nonequilibrium statistical 
mechanics based on chaos theory, the extraordinary conceptual difficulties of 
such an undertaking have so far prevented its achievement.  
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Fig. 17. The American-Russian mathematician Yakov G. Sinai with Crown 
Prince Haakon of Norway when he received the 2014 Abel Prize. 

 
3.4 The Path towards Chaos through Nonlinear Oscillators 
 

The construction of nonlinear dynamics is like that of a large river to 
which numerous tributaries contribute. One of these tributaries is the study of 
nonlinear oscillators. Among the pioneers in this path we can find the English 
physicist John William Strutt, Lord Rayleigh (1842-1919), motivated by his 
interest in understanding the physics of musical instruments. For this type of 
system, a first approximation based on the use of linear oscillators is not 
effective because the real instruments do not produce a simple tone, as it 
happens to a linear oscillator, so it is necessary to add friction on one side and 
terms not linear recovery by another. That is, it is necessary to use an elastic 
force different from that provided by Hooke's law: ut tensio sic vis. By clever 
use of the basic dynamical elements of the problem, Lord Rayleigh created 
models that explained the sound emitted by musical instruments. In his famous 
book The Theory of Sound published in 1877, Rayleigh introduced a series of 
fairly general methods such as the notion of a limit cycle, which is a periodic 
motion that has the physical system regardless of the initial conditions. 

German engineer Georg Duffing (1861-1944) is known primarily for 
his symmetric nonlinear oscillator model with a cubic nonlinearity: Duffing 
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oscillator. This model is a paradigmatic model for the study of many 
phenomena in nonlinear dynamics. The theory was later developed in the late 
1940s, just after World War II, by two English mathematicians at Cambridge 
University: Mary L. Cartwright (1900-1998) and John E. Littlewood (1885-
1977) who showed that many of the experiments of experimental physicists and 
many of the conjectures of theoretical physicists were derived directly from the 
analysis of differential equations of motion. In fact, these mathematicians had 
followed the ideas of George Birkhoff. 

The school of nonlinear thought in Russia was started by the work of 
Leonid I. Mandelstam (1879-1944) on nonlinear oscillators, who had trained 
with the German physicist August Kundt (1839-1894) in Strasbourg, well 
known for his works on acoustics and the Kundt tube. This line of work was 
continued by Alexander A. Andronov (1901-1952) (Fig. 18) and by Lev S. 
Pontryagin (1908-1988), who introduced the notion of structural stability of a 
system of equations, a concept associated with that of bifurcations of dynamical 
systems. 
 

 
 
Fig. 18. The Russian mathematician Alexander A. Andronov (1901-1952) one 
of the pioneers in nonlinear science. 
 

The concept of bifurcation of limit cycles that had been suggested by 
Poincaré in 1892, was tested by Andronov in 1930 and by Hopf in1940, and is 
called the Andronov-Hopf bifurcation, although it is better known simply as a 
Hopf bifurcation. This school continued later in the 50s and 60s in Gorky, 
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current Nizhnii Novgorod, obtaining parallel results to the development of the 
theory in the West. Many methods of nonlinear physics were developed under 
the paradigm of nonlinear oscillators and self-oscillations.  

Another important school on nonlinear thought in Russia was the Kiev 
School of Nonlinear Oscillations Research that was initiated by Nikolai M. 
Krylov (1879–1955) and his student Nikolai N. Bogolyubov (1909–1992) (Fig. 
19), at the beginnings of the 1930s. They developed much fundamental work on 
quasi-periodic solutions for non-autonomous systems and established the 
discipline of Nonlinear Mechanics as a part of Physics. Most of their work was 
published in the book Introduction to Nonlinear Mechanics (1937) [16] in 
Russian. An English version was published in 1943 by Princeton University 
Press after the translation carried out by the Russian mathematician Solomon 
Lefschetz (1884-1973) who led the Nonlinear Oscillation Project (ONR) in 
Princeton, and translated work available in Russian for the English-speaking 
world. 

 

 
 
Fig. 19. Nikolai M. Krylov and his student Nikolai N. Bogolyubov who develop 
the Nonlinear Mechanics School in Kiev in the 1930s. 
 
In Japan, the theory of nonlinear oscillators and their applications to 
radiophysics were developed at the school of Japanese engineer Chihiro 
Hayashi (1911-1986) at Kyoto University. Hayashi made notable contributions 
to the study of nonlinear oscillators and their practical applications in electrical 
engineering, publishing his famous book Nonlinear Oscillations in Physical 
Systems in 1964 [17]. 
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In 1961 a remarkable event takes place on the part of the Japanese engineer 
Yoshisuke Ueda, who was a doctoral student of Chihiro Hayashi. Ueda studied 
the dynamics of various nonlinear oscillators such as the van der Pol oscillator 
and the Duffing oscillator, and it is precisely in a particular model of the latter 
that he apparently found solutions for the first time that we now designate as 
chaotic solutions. 
 
3.5 Population Dynamics and the Logistic Map 
 
The logistic map was popularized by Robert M. May (1936-2020) (Fig. 20) 
after the publication of his influential paper “Simple mathematical models with 
very complicated dynamics” [18], and constitutes one of the paradigms of the 
chaotic behavior of nonlinear dynamical systems. Robert May started his 
scientific career as a physicist, but soon he moved into biology becoming one of 
the pioneers in theoretical ecology, what led him to become a pioneer in chaos 
theory. Despite the apparent simplicity of the logistic map, it displays complex 
dynamics including chaotic behavior. Its formulation derives from the logistic 
equation, introduced in 1838 as a model of growth in population dynamics by 
the Belgian mathematician Pierre François Verhulst (1804-1849) in his writing 
“Notice sur la loi que la population poursuit dans son accroissement”. The 
quadratic map, very similar to the logistic map, had also been extensively 
studied in other contexts by the French Gaston Julia (1893-1978), by the 
Hungarian-American John von Neumann (1903-1957), and by the American 
Norbert Wiener (1894-1964).  
 

 
 
Fig. 20. Robert M. May (1936-2020), Baron May of Oxford. A physicist and 
pioneer of theoretical ecology who led him to contribute to chaos theory. 
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One of the most influential articles in the field was undoubtedly the 
previously quoted article by Edward Lorenz Deterministic nonperiodic flow 
[13]. The American mathematician and physicist at the University of Maryland 
Prof. James A. Yorke (Fig. 21) immediately recognized the implications of such 
a discovery, as well as its philosophical repercussions, making Lorenz's work 
known to the scientific community. 
 

 
 

Fig. 21. The American mathematician and physicist James Yorke. He coined the 
term chaos in the modern scientific literature and made considerable 
achievements in chaos theory. 
 

Later he introduced the term chaos in the article entitled Period Three 
Implies Chaos [19] published together with his PhD student Tien-Yien Li in 
The American Mathematical Monthly magazine in 1975. A few years earlier, in 
1963, the Ukrainian mathematician A. N. Sharkovskii had proved a theorem 
(now known as Sharkovskii's theorem), which was published in Russian in the 
Ukrainian Mathematics Journal, and where part of the Li and Yorke's result 
appeared as a corollary. However, one of the fundamental novelties in the 
article by Li and Yorke is that they wrote that the appearance of a period three 
orbit implied the appearance of all the others, including the chaotic orbits, while 
Sharkovskii did not talk about the chaotic orbits. 

Subsequently, the American physicist Mitchell Feigenbaum (1944-
2019) discovered the existence of universal critical exponents that characterized 
the transition from periodic to chaotic motion in one-dimensional maps with the 
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property of period doubling. Simultaneously, the same discovery was made by 
the French Pierre Coullet and Charles Tresser, who at the time were doctoral 
students at the University of Nice, and by the German physicists at the 
University of Marburg, Siegfried Grossmann and Stefan Thomae. 

The renormalization group concept had previously been applied in the 
field of statistical mechanics to study the so-called critical phenomena and 
phase transitions and its development in these fields had earned the Nobel Prize 
for the American physicist Kenneth Wilson in 1982. These methods were 
applied by Feigenbaum and others to develop the mathematical theory of period 
doubling bifurcations. Until the beginning of the eighties, most of the works 
were of a theoretical nature or the result of numerical explorations with 
computers. In any case, the important consequences that these theoretical 
discoveries had for physics were always considered, as well as the possible 
importance for understanding the transition to fluid turbulence. 

French physicist Albert Libchaber (Fig. 22), currently at Rockefeller 
University in New York, carried out one of the first experiments where the 
phenomenon of period-doubling was shown when studying Rayleigh-Bénard 
convective cells in the late 1970s. American physicist Robert Shaw of the 
University of California at Santa Cruz performed a simple and particularly 
relevant experiment with a simple dripping faucet. Another important 
experimental milestone was carried out by the American physicists Jerry Gollub 
and Harry Swinney (Fig. 22), who also found the period doubling phenomenon 
by reproducing the classical Taylor-Couette experiment of fluid motion. Their 
contributions to the experimental verification of some of some of the ideas 
derived from chaos theory have stimulated much experimental work in 
nonlinear dynamics and chaos. 

 

 
 
Fig. 22. The physicists Albert Libchaber, Harry Swinney and Jerry Gollub have 
been pioneers on experimental work on chaos. 
 
3.6 Fractional dimensions, fractals and chaos 
 

There are many complex geometric shapes in nature such as shorelines, 
river beds, the biological forms and even the complex curves of the financial 
markets. A common feature in all of them is self-similarity. This is the property 
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that consists in that when a part of this form is increased, the same type of 
structure appears. To characterize objects with this universal property, the use 
of fractional dimensions is necessary, which led to the physicist and 
mathematician Benoit Mandelbrot (1924-2010) (Fig. 23) to call these objects 
"fractals". His work in collecting the enormous work that had been done by 
mathematicians before him such as the French Gaston Julia, the Swedish Helge 
von Koch, the Polish Wacław Sierpiński, as well as the works on dimensions by 
the German Felix Hausdorff and the Russian Abram S. Besikovich had a 
remarkable influence that he gave to the field of fractal geometry. 

 

 
 
 

Fig. 23. Benoit Mandelbrot (1924-2010) and the famous set that bears his name. 
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The notion of dimension is fundamental when measuring geometric 
objects. There are several ways to define the concept of dimension, but it is 
clear that a point has dimension zero, a straight line has dimension one, a plane 
has dimension two and a cube has dimension three. However, and as strange as 
it may seem, there are geometric objects whose dimensions are not an integer, 
turning out to be a fractional value. 
 

This is a simple notion of what is meant by a fractal dimension or a 
Hausdorff dimension, such that the Cantor set, mentioned above, has a 
dimension from log2 / log3 » 0.63, the Koch curve has a dimension of log3 / 
log4 » 1.26 and the Sierpinski set has a dimension of log3 / log2» 1.585. All of 
them are self-similar fractal sets, since they are obtained by means of an 
iterative rule so that the basic structure is repeated at all scales. 

The Koch curve (Fig. 24) was devised by the Swedish mathematician 
Helge von Koch (1870-1924), and is constructed as follows: We start with an 
interval that we divide into three equal pieces, and in the middle piece we build 
a triangle and equal sides as it appears in the figure.  
 
 

 
 

Fig. 24. The Koch curve is a fractal set 
 

Next, we repeat the same strategy in each of the four pieces, giving rise 
to the figure in the middle, and we repeat the process in successive iterations 
giving place to a figure that resembles a snowflake. The Sierpinski fractal is due 
to the Polish mathematician Wacław Sierpiński (1882-1969) and is constructed 
as follows. We consider a triangle with equal sides, like the one shown in Fig. 
25. Next, we remove the white triangle from inside it and in each of the 
remaining triangles we remove the white triangle and so on, finally giving rise 
to successive iterations to the Sierpinski triangle, which is a self-similar fractal 
object. 



  
  
  
  
230   MIGUEL  A.  F.  SANJUÁN  

 

 
 

Fig. 25. Sierpinski fractal set 
 

Although in principle fractal geometry and nonlinear dynamics are 
two disciplines that apparently have nothing to do with it, nevertheless, as 
previously noted, chaos and fractals are intimately linked. One of the main ideas 
is due to the fact that associated with the notion of chaos exists that of the 
chaotic attractor that constitutes a geometric object of a fractal nature that lives 
in the phase space, so that it is impossible to speak of chaos without speaking of 
fractals and vice versa. 
 
4.   On the Origins of Complexity 

 
At the beginning of the 20th century, fundamental developments took 

place in two new fields of research in Physics that represent a huge conceptual 
revolution in the development of science. On the one hand, the theory of 
relativity that helped us understand the world on cosmic scales and quantum 
mechanics that involved the knowledge and exploration of the microscopic 
world at the atomic and subatomic levels. On the other hand, during the second 
half of the 20th century, we have been able to see how nonlinear dynamics and 
chaos theory emerged as one of the very fruitful fields of activity in research. 
Likewise, the discipline of complexity, or the physics of complex systems, has 
received a huge push, including new lines of research and bringing a new way 
of doing things. 
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Fig. 26. Warren McCulloch (1898-1969). One of the pioneers in complexity and 
mathematical neurosciences. 
 

Talking about the origins of things is never easy and of course the 
origins of complexity are no exception. In spite that for many it is a relatively 
new notion, since its use has become widespread in recent years, its origins date 
back to much earlier times. When exploring certain ideas and activities that 
have contributed to the development of this set of ideas that complexity 
encompasses, it is worth mentioning the American neuroscientist Warren 
McCulloch (Fig. 26), who together with the mathematician Walter Pitts, 
proposed in 1943 the well-known McCulloch-Pitts neuron model to analyze 
brain properties. McCulloch also played a prominent role in the organization in 
the 1940s of the Macy Conferences, with the support of the Macy Foundation, 
where numerous scientists from various disciplines participated in a highly 
interdisciplinary environment, among which we can mention the psychiatrist 
William Ross Ashby, the anthropologist Gregory Bateson; mathematicians John 
von Neumann, Walter Pitts and Norbert Wiener, biophysicist Max Delbrück, 
information theorist Claude Shannon and Warren McCulloch himself as 
moderator. 

On the other hand, it is of special interest the figure of the American 
scientist Warren Weaver (1894-1978) (Fig. 27), who among other things was 
co-author with Claude E. Shannon of the famous book The Mathematical 
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Theory of Communication published by The University of Illinois Press in 
1949. 
 

 
 

Fig. 27. Warren Weaver (1894-1978) pioneer in the use of computers in 
scientific research. 

 
In 1948 he published a very interesting article, considered foundational, 

entitled Science and Complexity [20] in the American magazine American 
Scientist. In fact, he used material that had been published in 1947 and the most 
important thing is that it is premonitory of many aspects of the complexity that 
have been discussed in recent years. 
 
4.1 Physics and Emergence 
 

One of the fundamental ideas in complexity is the idea of emergence. In 
physics there are numerous examples of systems where emerging properties are 
evident, such as superconductivity and superfluidity. It should also be noted that 
there is all a fundamental research that seeks to investigate complex 
phenomena, where instead of resorting to reductionism, which has been the 
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approach that has governed the evolution of Physics in recent years, the primary 
engine of this research is the emergence. A fundamental point is that these 
emerging complex phenomena do not derive from the underlying microscopic 
laws, although of course they do. 
 
Some of these ideas were masterfully presented by the physicist Philip W. 
Anderson (1923-2020) (Fig. 28), 1977 Nobel Prize in Physics, in an article 
published in the journal Science in 1972 and entitled More is different [21], 
where he leaves very clear the idea that: 
 
"At each level of complexity entirely new properties appear, and the 
understanding of the new behaviors requires research which I think is as 
fundamental in its nature as any other.” 
 

 
 

Fig. 28. Philip W. Anderson (1923-2020), 1977 Nobel Prize in Physics. 
 
Philip W. Anderson introduces some aspects of the physics of complex systems 
in the article entitled Physics: The Opening to Complexity [22], where he points 
out, among other things:  
 
“But another large fraction are engaged in an entirely different type of 
fundamental research: research into phenomena that are too complex to be 
analyzed straightforwardly by simple application of the fundamental laws. 
These physicists are working at another frontier between the mysterious and the 
understood: the frontier of complexity. At this frontier, the watchword is not 
reductionism but emergence. Emergent complex phenomena are by no means in 
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violation of the microscopic laws, but they do not appear as logically 
consequent on these laws.” 
 
In relation to the physics of emergence, it is also worth mentioning Robert 
Laughlin, 1998 Nobel Prize in Physics and professor at Stanford University, 
who proposed to his best students the problem of deducing the laws of 
superfluidity from first principles, knowingly that it is impossible. Precisely to 
show them the importance of emergent properties in physics, which is the 
fundamental argument of his book A Different Universe: Reinventing physics 
from the bottom down [23]. 
 
The book is based on an interesting article entitled The Science of Everything 
[24], where among the many questions he points out we can highlight the 
following two paragraphs:  
 
The central task of theoretical physics in our time is no longer to write down the 
ultimate equations but rather to catalogue and understand emergent behavior 
in its many guises, including potentially life itself. We call this physics of the 
next century the study of complex adaptive matter. For better or worse we are 
now witnessing a transition from the science of the past, so intimately linked to 
reductionism, to the study of complex adaptive matter, firmly based in 
experiment, with its hope for providing a jumping-off point for new discoveries, 
new concepts, and new wisdom. 
 
"End of Reductionism, for it is actually a call to those of us concerned with the 
health of physical science to face the truth that in most respects the reductionist 
ideal has reached its limits as a guiding principle. Rather than a Theory of 
Everything we appear to face a hierarchy of Theories of Things, each emerging 
from its parent and evolving into its children as the energy scale is lowered. The 
end of reductionism is, however, not the end of science, or even the end of 
theoretical physics.” 
 

In fact, when one looks at the world what one observes is of amazing 
complexity. Although, for the moment, there are no laws of complexity, as there 
are laws of physics, the authors cited above list a number of simple lessons on 
complexity that derive from the analysis and observation of numerous complex 
systems that exist in the universe. 

Hungarian physicist Tamas Vicsek from the Department of Biophysics 
at Eötvös University in Budapest argues in an essay published in Nature [25] 
that when a concept is not well defined, as is the case with complexity, there is a 
danger of abusing it. It is true that on many occasions the term can be used 
indiscriminately as a sign of modernity. However, the fundamental idea derived 
from this essay is that the laws that describe the behavior of complex systems 
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are qualitatively different from those that govern the units of which they are 
composed. 
 
4.2 Complexity and Life Sciences 
 

The enormous development of scientific activity in recent years has 
caused many disciplines to find fields of application in other sciences. This is 
what, among many other cases, has happened with the application of disciplines 
such as physics, mathematics and engineering in the development of some 
aspects of the life sciences, in which we could include not only biology, but also 
biomedical sciences and biotechnology. You might think that it is a simple 
fashion and something that for some reason has been happening for just a few 
years. However, it is important to note that the influence of these sciences and 
their contributions to the life sciences are very old. 
 

 
 

Fig. 29. Erwin Schrödinger, 1933 Nobel Prize in Physics and known above all 
for his contributions to quantum mechanics, who authored the influential book 
What is life? published in 1944. 
 

There are many eminent physicists, including Nobel Laureates, whose 
work has been related in some of the aspects related to the issues of complexity. 
Among them are: Erwin Schrödinger, 1933 Nobel Prize in Physics and known 
above all for his contributions to quantum mechanics, who authored the 
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influential book What is life? published in 1944 (Fig. 29). Physicist Max 
Delbrück (1906-1981), Nobel Prize in Medicine in 1969 for his pioneering work 
in Molecular Biology. Philip W. Anderson, 1977 Nobel Prize in Physics, well 
known for his work in condensed matter physics, has also played a relevant role 
in the development of some ideas related to complexity, especially emergence. 
Physicist Murray Gell-Man, 1969 Nobel Prize in Physics; who coined the term 
quark. 

Another fundamental character in this relationship that we are making is 
the mathematician Norbert Wiener (1894-1964) (Fig. 30), professor at the 
Massachusetts Institute of Technology (MIT), who was one of the founders of 
Cybernetics, and knew how to create a highly interdisciplinary environment 
around him with numerous applications to life sciences. We could continue 
quoting numerous physicists, such as Nicholas Metropolis, George Gamow, Leo 
Szilard, Jack Cowan or Geoffrey West. 

 

 
 
Fig. 30. Norbert Wiener (1894-1964) one of the founders of Cybernetics. 
 

Among the most widely used mathematical models in computational 
neuroscience, which aim to analyze the brain as a complex system, we can 
consider the Hodgkin-Huxley model. In 1952 Alan L. Hodgkin and Andrew. F. 
Huxley (Fig. 31) wrote a series of five articles [26] in which they described the 
experiments they carried out to determine the laws of ion motion in nerve cells 
during an action potential. 
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Fig. 31. Alan L. Hodgkin and Andrew F. Huxley received the Nobel Prize in 
Nobel Prize in Physiology or Medicine in 1963 for his neural model. 
 

They formulated a mathematical model to explain the behavior of nerve 
cells in a giant squid. Remarkably, this model was formulated long before the 
existence of electron microscopes and computer simulations and allowed 
scientists basic knowledge of how nerve cells function without knowing how 
membranes behaved. They received the Nobel Prize in Physiology or Medicine 
in 1963, along with Sir John C. Eccles for their discoveries regarding the ionic 
mechanisms involved in excitation and inhibition in the peripheral and central 
portions of the nerve cell membrane. 
 
5.   Conclusions 

 
One of the key ideas that should be highlighted here is that although the 

physics of complex systems is currently one of the frontiers of current physical 
research, the ideas of complexity go back to the beginning of the 20th century 
and have been developed along various paths until we reach the vision we have 
as of today, although their evolution and development throughout the 21st 
century are quite open. 

The concept of emergence versus reductionism is another of the 
fundamental ideas in the physics of complex systems. The ones concerning 
emergence go back even to the origins of thermodynamics, and they appear in 
various phenomena studied by that science. Concepts such as chaos and fractals 
are mentioned in a special way, which have been a catalyst for many of the 
notions around which complexity moves. Without a doubt, interdisciplinarity is 
of the utmost importance in this context, since, as it has been pointed out, many 
ideas associated with complexity help to integrate disciplines, as well as 
breaking traditional disciplinary barriers. 

At all times it has been wanted to put on record that many of the ideas 
discussed in this article have been beating in the thought and action of many 
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physicists in the past and present, who have been open to problems about the 
complexity of life and nature, including some Nobel Prizes. 

In recent years, numerous scientists have contributed to the development 
of chaos theory. In 2003 the Japan Prize, which is awarded each year by the 
Japanese government through the The Japan Prize Foundation was dedicated to 
Complexity Science and Technology. The award was won by the scientists 
Benoit Mandelbrot for his contributions to fractals and James A. Yorke for his 
contributions to the foundation of chaos theory. This award was very special to 
the community of scientists working in these fields, since for the first time an 
award of this magnitude was awarded to scientists working on complex science 
issues.  

Following the efforts of numerous scientists, as we have just shown, the 
entire field of research covering nonlinear dynamics, chaos theory and 
complexity continues to develop and influence numerous disciplines with new 
methods and novel ideas, showing great prospects for the future. 
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