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PREFACE

This book contains some papers related to the talks presented at
the 2nd Conference on Nonlinearity, held online on October 18–22,
2021. The conference is organized by the Serbian Academy of Non-
linear Sciences (SANS) in cooperation with the Mathematical Insti-
tute (Serbian Academy of Sciences and Arts), Faculty of Mathematics
(University of Belgrade), Institute of Chemistry, Technology and Met-
allurgy (University of Belgrade), and Faculty of Sciences and Mathe-
matics (University of Nǐs).

It is well known that nonlinear phenomena and processes are present
everywhere in nature – from fundamental interactions between elemen-
tary particles, via various terrestrial processes in fluids and optics,
to the dynamics of celestial objects and the evolution the universe
as a whole. Nonlinear methods, in particular nonlinear differential
equations, are used in research of all sciences – from fundamental to
applied. Contemporary comfortable human life largely depends on
technological achievements based on nonlinear processes.

Serbian Academy of Nonlinear Sciences is a scientific society whose
members are scientists that significantly contributed to developments
of nonlinear sciences in Serbia. The main goal of SANS is a strong
fruitful support to versatile developments of nonlinear sciences, partic-
ularly in Serbia. Organization of scientific meetings – colloquiums and
conferences on nonlinearity – are among principal activities of SANS.
SANS strives to connect as much as possible with scientists and re-
lated scientific activities throughout the world. More information on
the Serbian Academy on Nonlinear Sciences is available at its website
http://www.sann.kg.ac.rs/en/sans/.

About 70 scientists from 19 countries participated in this con-
ference (Australia, Austria, France, Germany, Hungary, India, Is-
rael, Japan, Poland, Qatar, Romania, Russia, Serbia, Slovenia, Spain,

V



UAE, UK, Ukraine, USA). Lectures were given by 4 keynote speak-
ers (45 min.), 9 invited speakers (35 min.) and 35 other partici-
pants (25 min.). Some details can be seen on the conference website
http://www.nonlinearity2021.matf.bg.ac.rs/.

On behalf of the Serbian Academy of Nonlinear Sciences, we would
like to express our gratitude to the Ministry of Education, Science and
Technological Development of the Republic of Serbia for a financial
support to publish these Proceedings. We are also thank the Coorga-
nizers and the management of the journal Symmetry for a support of
this conference. In particular, we are thankful to all speakers and the
authors of contributions to the Proceedings. We hope very much that
this collection of papers will be useful not only to participants of this
conference but also to all others who are interested in nonlinearity.

The Serbian Academy of Nonlinear Sciences plans to continue with
the organization of Conferences on Nonlinearity regularly with a pe-
riod of two years. It is our great wish that next year there will be no
problem with the Corona virus epidemic and that the third conference
will be held in person. We will be happy to see all participants of the
first two conferences again, as well as many new ones.

Belgrade, Summer 2022
E d i t o r s

Branko Dragovich
(President of SANS)

Zeljko Cupic
(General secretary of SANS)
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On the terrestrial measurement of frame-dragging * 
 

Matthew P. Cartmell† 
Department of Mechanical & Aerospace Engineering, University of 

Strathclyde, Glasgow, G1 1XJ, Scotland, UK. 
 
 

ABSTRACT 
 

This paper considers the Foucault pendulum and its possible 
application as a measurement instrument for the relativistic effect of 
Lense-Thirring precession from frame-dragging. We discuss the Foucault 
pendulum under different forms of excitation. The first is through 
parametric excitation of the length, effective for overcoming natural 
aerodynamic and frictional dissipations and for amplification and 
ellipticity control of the response. The second is through coupling between 
a strong bob magnet and an exciter coil directly underneath, without the 
bob moving vertically at the frequency of parametric excitation. The 
achievements of the GP-B and LAGEOS missions in measuring frame-
dragging in low Earth orbit are noted for comparison. The natural location 
for a frame-dragging measurement is polar and we derive an expression 
for Lense-Thirring precession using a gravitoelectromagnetic analogy for 
non-polar locations. The paper attempts to clarify the main challenges of 
this measurement. 

 
1. Introduction 
We start with the premise that an inertial frame is defined as one that is not 
accelerating in the usual detectable sense. General Relativity states that inertial 
frames are ‘influenced and dragged by the distribution and flow of mass–energy 
in the universe’, noting the relativistic equivalence of mass and energy [1]. This 
dragging of inertial frames is simply called frame-dragging and influences, for 
example, the flow of time around a spinning body. 

A theory for frame-dragging was proposed by Lense and Thirring in 1918, 
in which inertial frames are dragged around a central rotating mass due to the 

* The author would like to thank the following people for their valuable comments and 
suggestions: J.E.Faller, J.Hough, N.A.Lockerbie, R.Schumacher, and K.S.Thorne. 
Acknowledgement is also due to the University of Strathclyde for on-going access to 
laboratory facilities. 
† e-mail address: matthew.cartmell@strath.ac.uk 
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effect of its angular momentum on the surrounding spacetime [2]. The rotation 
of the central mass twists the surrounding spacetime, which will perturb any 
nearby spinning gyroscope.  For such a gyroscope in orbit around the Earth, for 
example, its axis of rotation will precess: this effect is known as Lense-Thirring 
precession, and henceforth as LT precession. In fact, Earth’s curvature of 
spacetime is capable of generating frame-dragging that is generally considered 
to be demonstrable in three gravitomagnetic manifestations: 

 
- by the precession of a gyroscope in orbit around the Earth, just 

mentioned, 
- by the precession of orbital planes, where a mass orbiting the Earth  

constitutes  a gyroscope whose orbital axis will precess, under 
appropriate conditions, and 

- by the precession of the periapsis of the orbit of a test mass about the 
Earth. 

GP-B measured the first two [3], and the LAGEOS satellites measured the 
second one only [4]. LAGEOS measured the LT drag of the satellite orbital planes 

to be ~0.031 arcsecs/year [1], which is ~ 8.611*10-6 °/year. This was subject 
to error that was difficult to quantify, due to uncertainty in the Earth’s mass  
distribution, and the effects of atmospheric drag, and there is still some debate 
about the true size of  the  error  in  LAGEOS’s measurement, but it is thought 
mainly to have derived from the low eccentricity of the LAGEOS orbits and 
the difficulties in eliminating Earth multipoles.  In contrast, GP-B measured LT to 

be ~ 0.037 arcsecs/year [1], which equates to 10.833*10-6 °/year.  GP-B used IM 
Pegasi HR 8703 as the guide star and operated on a highly circular polar orbit of 
642 km altitude [1]. The spin axes of GP-B’s gyroscopes drifted and the 
geodetic precession [5] (due simply to the presence of the mass of Earth rather 
than its presence and its rotation) was itself measured to an impressive precision 
of 1.5 %. The total relativistic precession of such a spinning body is the vector 
sum of the LT and geodetic precessions, whose components in the case of GP-
B were usefully at right angles to each other. Our main interest is the LT 
component. It is important to note that the relativistic frame-dragging effect 
evidenced by LT precession is about ten million times smaller than, for example, 
the classical Newtonian effects operating on the plane of the LAGEOS orbits, 
requiring an ‘enormously accurate treatment of background effects’ [6]. The 
analysis behind LT precession, in terms of (weak) gravitomagnetic effects on 
an accelerating mass, can be considered analogously with a circulating charge 
producing a magnetic field. Specifically, the analogy is between the equations 
that govern the torques on a spinning electric charge with magnetic moment 𝜇 
moving through a magnetic field, and the torques on a spinning test-mass moving 
under the influence of a large and nearby rotating mass [1], and this analogy is 
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made through Maxwell’s equations which we return to later. Karl Schwarschild 
[7] proposed an exact solution, now known as the Schwarschild metric, for the 
tensor governing the space surrounding a large non-rotating spherical body, and this 
fully describes curved (non-Euclidean) space.  On the other hand, the Kerr metric 
accounts for the rotation of the massive body [7], and the mean GP-B 
measurement of LT precession was within ~5 % of the value predicted by using 
the Kerr metric — but with a measurement error estimated at approximately ±19 
% . The general Kerr solution for LT precession is somewhat complicated, but in 
the vicinity of the Earth we are dealing with weak fields and non-relativistic 
velocities, so that the full form of general relativity is not necessary and a 
linearised version of the theory is sufficient [8].  If we consider spacetime to be 
stationary around the Earth, i.e. mass and fluid velocity distributions are 
unchanging, in spite of the Earth’s rotation, then this simplifying stationarity can 

be used as a basis for a ‘3+1 slicing’ of spacetime, in terms of the spatial (3) and 

time (1) dimensions.  This means that the spacetime metric tensor 𝑔𝜇𝜈  then 
decomposes naturally into constituent parts, and because of the prevailing 
conditions of weak gravity and non-relativistic (low) velocities this 
decomposition can be used to form the basis of a useful analogy with 
electromagnetism as expressed by Maxwell’s equations, from which an 

expression for LT precession can eventually be obtained [8,9].   
 

1.1 Lense-Thirring precession about the Earth 
We start with gravitational analogies for the electromagnetic scalar and vector 
potentials taken from the Kerr spacetime metric, stated in terms of the time-time 
and time-space components, where c is the speed of light, 
 

 𝛷 =
1

2
(𝑔00 − 1)𝑐2 (1) 

 
 𝐴𝑖 = 𝑔0𝑖𝑐2. (2) 
 
To get the analogies we take Maxwell’s equations in their usual form, 
 
 𝛻. 𝐸̅ =

𝜌

𝜀0
 (3) 

 
 ∇. 𝐵̅ = 0 (4) 
 

 ∇ × 𝐸̅ = −
𝜕𝐵̅

𝜕𝑡
 (5) 

 

 ∇ × 𝐵̅ = 𝜇0𝐽 ̅ + 𝜇0𝜀0
𝜕𝐸̅

𝜕𝑡
. (6) 
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We then look at the physical context for Maxwell’s equations. Equation (3) states 

that the quantity of electric field coming from a region of space is proportional to 
the total electric charge in that region of space. Equation (4) states that the 
magnetic field doesn’t come or go but travels in a continuous loop. Equation (5) 

says that the curl of the electric field is equal to the negative of the rate of change 
of the magnetic field. Changing the magnetic field alters the curl of the electric 
field, with the negative sign defining that they go in opposite directions. So, the 
curl of the electric field pushes electric charge round in a circle in the form of an 
electric current. Finally, equation (6) says that the curl of the magnetic field is 
proportional to the current density and a changing electric field. Defining terms 
precisely: 𝐸̅ is the electric field, 𝜌 is the electric charge density, 𝜀0 is the 
permittivity of free space, 𝐵̅ is the magnetic field, 𝜇0 is the permeability of free 
space, and 𝐽 ̅is the current density.  
We then bring in the gravitoelectric field 𝐸̅𝐺  and the gravitomagnetic field 𝐻̅ and 
it is well known that they are related to the potentials of equations (1) and (2) 
according to the simplifying Lorentz gauge [10], as follows,  
 

 𝐸̅𝐺 = −∇Φ −
1

4𝑐

𝜕𝐴̅

𝜕𝑡
 (7) 

 
 𝐻̅ = ∇ × 𝐴̅. (8) 
 
In the analogy given by [8], the electric field of Maxwell’s equations 𝐸̅ becomes 
the gravitoelectric field 𝐸̅𝐺  and the magnetic field of Maxwell’s equations 𝐵̅ 
becomes the gravitomagnetic field 𝐻̅. The electric charge density 𝜌 becomes the 
mass density 𝜌𝑚. The charge current density 𝐽 ̅becomes the mass current density 
defined by 𝐺𝜌𝑚𝑣̅, where G is Newton’s gravitational constant and 𝑣̅ is the 
velocity of the source mass. These substitutions are applied by means of the 
analogy in order to generate the gravitational analogue of Maxwell’s 

electromagnetic equations, 
 
 ∇. 𝐸̅𝐺 = −4𝜋𝐺𝜌𝑚 (9) 
 
 ∇. 𝐻̅ = 0 (10) 
 
 ∇ × 𝐸̅𝐺 = 0 (11) 
 

 ∇ × 𝐻̅ = 4 [−4𝜋𝐺
𝜌𝑚𝑣̅

𝑐
+

1

𝑐

𝜕𝐸̅𝐺

𝜕𝑡
]. (12) 

 
Despite some structural similarities between the equations which emerge from 
the gravitational analogy, (9)-(12), and Maxwell’s equations themselves, 
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equations (3)-(6), there are still some qualifiers and provisos to be made, [8] as 
follows: 

- gravity is attractive, but electromagnetism is both attractive and repulsive 
(this difference leads to the minus signs in the RHS ‘source terms’ in 

equations (9) and (12), 
- the gravitational tensor introduces the additional 4 in equation (12), 
- the space-space components from the gravitational metric tensor 

correspond to curved space rather than Euclidean space. As we are only 
interested here in the effects of the Earth’s rotation on an orbiting test 

mass then we can neglect the curvature of space and also those terms that 

are not gravitometric and of the order of (
𝑣

𝑐
)

2
. 

Assuming that equations (9)-(12) can be used to find the gravitoelectric and 
gravitomagnetic fields, the force on an orbiting test mass can be found from, 
 
 𝐹̅ = 𝑚𝐸̅𝐺 +

𝑚

𝑐
𝑣̅ × 𝐻̅ (13) 

 
from which we get, 

 𝑚
𝑑𝑣̅

𝑑𝑡
= −

𝛼

𝑟2 𝑛̅ +
𝑚

𝑐
𝑣̅ × 𝐻̅ (14) 

 
and where 𝑟̅ = 𝑟𝑛̅  is the orbital radius vector of the test mass m and 𝛼 = 𝐺𝑀𝑚, 
where M is the mass of the Earth. We recall that 𝐻̅ is the gravitomagnetic field 
due to the Earth’s rotation and note that this can be found from equations (9)-
(12). Because, in general, the magnetic moment is given by, 
 

 𝜇̅ =
1

2𝑐
∫[𝑟̅ × 𝑗]̅𝑑𝑉  

 
where 𝑗 ̅is the electric current density, so the gravitational analogy leads to, 
 

 𝜇̅𝐺 = −4𝐺
1

2𝑐
∫ 𝜌𝑚 [𝑟̅ × 𝑗]̅𝑑𝑉 = −2𝐺

𝑆̅

𝑐
 (15) 

 
where  𝑆̅ = ∫ 𝜌𝑚[𝑟̅ × 𝑗]̅𝑑𝑉, this being the rotating gravitating body’s proper 

angular momentum. The conventional magnetic moment 𝜇̅ creates a dipole 
magnetic field, given by, 

 𝐵̅ =
3𝑛̅(𝑛̅∙𝜇̅)−𝜇̅

𝑟3   

so, inserting 𝜇̅𝐺 instead of 𝜇 leads to a form which now represents the Earth’s 

dipolar gravitomagnetic field, 

 𝐻̅ =
2𝐺

𝑐
[

𝑆̅−3𝑛̅(𝑛̅∙𝑆̅)

𝑟3 ]. (16) 
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The abstract angular momentum for the large rotating body 𝑆̅ can be replaced by 
the angular momentum specific to the Earth, defined as 𝐿′̅ in [8], so we can extract 
the Earth’s angular velocity as, 

 Ω̅ =
2𝐺

𝑐2𝑟3 𝐿′̅. (17) 

 
Therefore, the gravitomagnetic field stated in equation (16) can now be restated 
in terms of the Earth’s angular velocity, where 𝑆̅ ≡ 𝐿′̅, noting that it is divided by 
the velocity of light in order to accommodate equation (17) correctly, 
 

 
𝐻̅

𝑐
= Ω̅ − 3𝑛̅(Ω̅ ∙ 𝑛̅). (18) 

 
In order to proceed to the LT precession we need to revert to explicit angular 
momentum of the Earth, through equation (17) and then rearrange to get the 
gravitomagnetic field in terms of fundamental quantities and in the conventional 
form, as follows, 

 𝐻̅ =
4𝐺

𝑐
[

𝐿′̅𝑟2−3𝑟̅(𝐿′̅∙𝑟̅)

2𝑟5 ]. (19) 

 
One can find the same result for 𝐻̅ in [10] although the notation and the 
aggregation of constants is done differently there. Before we complete the 
analysis for the LT precessional term we state the general expression for the spin 
precession rate for LT from the Schiff formula statement of the LT metric [11], 
which is, 
 
 Ω̅𝑇𝑜𝑡 = Ω̅𝑇ℎ + Ω̅𝐺𝑒𝑜 + Ω̅𝐿𝑇 (20) 

 
where Ω̅𝑇𝑜𝑡 is the total angular velocity measured, assuming an orbital test mass 
such as a satellite containing gyrospcopic measurement instruments. The right-
hand side terms of equation (20) are the Thomas precession Ω̅𝑇ℎ, the geodetic 
precession Ω̅𝐺𝑒𝑜, and the LT precession Ω̅𝐿𝑇. Concentrating on the LT precession, 
averaging over fast orbital motions [8] and persevering with the notation of [8], 
we find [12] that LT is directly equal to, 

 Ω̅𝐿𝑇 =
𝐻̅

2𝑐
 (21) 

 
and so for a closely orbiting body equation (19) gives this for the averaged 
gravitomagnetic field at the poles, 
 

 𝐻̅𝑝𝑜𝑙𝑒𝑠 =
4𝐺

𝑐

𝐿̅′

𝑟3 (22) 
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and if we now move from a general closely orbiting body to a specific terrestrial 
location where there is a body elevated at h from the surface of the Earth 
(therefore at altitude R, where 𝑅 = 𝑟𝐸 + ℎ, and 𝑟𝐸 is the radius of the Earth at the 
location), then the LT precession from equation (19) is given for both northern 
and southern latitudes, by,  

 Ω𝐿𝑇 =
𝐺

𝑐2𝑅3 𝐿′ |1 − 3|𝑧̅. 𝑟̅||. (23) 

 
The scalar angular momentum 𝐿′ is given by  𝐿′ = 𝐼⊕Ω⊕, and considering the 

Earth initially as a non-oblate sphere then 𝐼⊕ =
2

5
𝑀𝑟𝐸

2.  But the actual radius of 

gyration of the Earth is 0.576 rE [13], so the factor of  
2

5
  becomes  0.5762 which 

is 0.3316. Therefore  𝐼⊕ = 0.3316 𝑀𝑟𝐸
2, from which we obtain, 

 

 Ω𝐿𝑇 =
0.3316 𝐺𝑀Ω⊕

𝑐2𝑅
|1 − 3|𝑐𝑜𝑠𝜃|| (24) 

 
where  𝑧̅ ∙ 𝑟̅ = 𝑐𝑜𝑠𝜃 and 𝑅 ≈ 𝑟𝐸  for h very small indeed. This result does not 
include the geodetic precession and is purely the LT component. The angle 𝜃 is 
the colatitude which is the included angle between 𝑧̅ and 𝑟̅ (the spin axis of Earth 
and the local vertical axis at the location, respectively) so 𝜃 =

𝜋

2
− 𝜙, where 𝜙 is 

the latitude as measured north or south from the equator. At the poles, from 
equation (22), we get a reduced form of equation (23) as follows, 
 

 Ω𝐿𝑇 =
2𝐺

𝑐2𝑅3 𝐿′(𝑍̅ ∙ 𝑧̅). (25) 

 
This simplifies to the following after making the appropriate substitutions, 
 

 Ω𝐿𝑇 =
0.6632 𝐺𝑀Ω⊕

𝑐2𝑅
𝑐𝑜𝑠𝜃. (26) 

 
1.2 Theoretical predictions for LT precession at the North Pole and at 
Glasgow 
The following numerical data can be used to calculate the precession both at the 
North Pole and at Glasgow: G = 6.67408*10-11 m3 kg-1 s-2, M = 5.972*1024 kg, 
 Ω⊕  = 7.2921150*10-5 rad/s, c = 2.99792488*108 m/s, R = 6356*103 m at the 
North Pole, R = 6363.18*103 m at Glasgow, 𝜙 = 1.5707963 rad at the North Pole, 
𝜙 = 0.9750 rad at Glasgow. Pippard [14] gives the LT precession as 220 mas/year 
at the North Pole. Ruggiero & Tartaglia [12] state the LT precession at the North 
Pole to be 281 mas/year. Using equations (24) or (26) and the above data we get 
Ω𝐿𝑇 = 219.5 mas/year at the North Pole. By changing both the latitude and the 
radius of the Earth to the values for the location of Glasgow the LT precession 
there can be calculated using equation (24) to be Ω𝐿𝑇 = 162.6 mas/year.  
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2. Calculation of LT precession at co-latitude 𝜽 
The LT precession measured at co-latitude 𝜃 is given by equation (27) and 
comprises the measured precession of the pendulum bob m with respect to the 
Earth (first RHS term) minus the apparent precession associated with a guide star 
relative to the Earth (second RHS term) minus the precession of the pendulum 
relative to the guide star (third/fourth RHS term), as first explained in [15]. At the 
poles the third/fourth terms go to zero because 𝜃 is zero at both poles. The 
immediate objective is to calculate a typical numerical value for the third/fourth 
terms for Glasgow to see how they will influence Ω𝐿𝑇𝜃

. 
   
 𝛺𝐿𝑇𝜃

= 𝛺𝐹𝑃𝑚 𝐸⁄
− 𝛺𝑔𝑠 𝐸⁄ − 𝛺⊕(1 − 𝑐𝑜𝑠 𝜃) (27) 

 
The WGS-84 local terrestrial gravity model [16] can be inverted to get 𝜙 from 
𝑔𝑙𝑜𝑐𝑎𝑙, 
 

 𝑔𝑙𝑜𝑐𝑎𝑙 = 𝑔𝑒𝑞 (
1+𝑘𝑠𝑖𝑛2𝜙

√1−𝜀2𝑠𝑖𝑛2𝜙
) (28) 

 
where,  

 𝜀2 = 1 − (
𝑏

𝑎
)

2
 (29) 

 

 𝑘 =
(𝑏𝑔𝑝−𝑎𝑔𝑒𝑞)

𝑎𝑔𝑒𝑞
 (30) 

 
 𝜃 =

𝜋

2
− 𝜙. (31) 

 
The acceleration due to gravity measured at the experimental site,  𝑔𝑙𝑜𝑐𝑎𝑙, could 
be detected from a MEMS gravimeter as a continuous signal over time, and if we 
take 𝑔𝑒𝑞 , 𝑔𝑝, 𝑎, 𝑏 as known values that can be input to a calculation based around 
the WGS-84 local terrestrial gravity model [16,17,18] (given in equations (28)-
(30)) then we can obtain a corresponding value for latitude, 𝜙. From that we can 
easily calculate the associated co-latitude, 𝜃, using equation (31). The gravimeter 
will give a fluctuating value for 𝑔𝑙𝑜𝑐𝑎𝑙 over time, and this will have an upper and 
lower value, and a nominal value, with corresponding values for 𝜙, which we 
define as, 𝜙𝑈, 𝜙𝐿, and 𝜙𝑁, respectively. See Figure 1 for details of a typical time 
response for the prototype MEMS device of [19]. This means we can calculate 
three values for the co-latitude too, using equation (31), giving 𝜃𝑈, 𝜃𝐿, and 𝜃𝑁. 
From that we can calculate the value of the right-hand-side third and fourth terms, 
as follows, 
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 𝛺𝑇3&4
= −𝛺⊕(1 − 𝑐𝑜𝑠 𝜃) (32) 

 

 
 
Figure 2.1 Measurement of fluctuations in the local gravitational acceleration in the city 
of Glasgow, Scotland, reproduced with the permission of the authors of [19]. 

 
If we take the upper, lower, and nominal values of the third/fourth terms of the 
right-hand-side of equation (27) we get this, 
 
 𝛺𝑇3&4𝑈

= −𝛺⊕(1 − 𝑐𝑜𝑠 𝜃𝑈), (33) 

 𝛺𝑇3&4𝐿
= −𝛺⊕(1 − 𝑐𝑜𝑠 𝜃𝐿)    and   (34) 

 𝛺𝑇3&4𝑁
= −𝛺⊕(1 − 𝑐𝑜𝑠 𝜃𝑁)  (35) 

 
The three values of 𝑔𝑙𝑜𝑐𝑎𝑙 can be found to be as follows from published data for 
Glasgow, Scotland [17], noting the predicted fluctuation of around ± 100 𝜇Gal 
of Figure 2.1 which equates to ± 0.000001 m/s2: 𝑔𝑙𝑜𝑐𝑎𝑙𝑈

= 9.8156 + 0.000001 = 
9.815601 m/s2 , 𝑔𝑙𝑜𝑐𝑎𝑙𝐿

= 9.8156 – 0.000001 = 9.815599 m/s2, 𝑔𝑙𝑜𝑐𝑎𝑙𝑁
= 9.8156 

m/s2. 
Using the WGS-84 model [16] with free air correction for elevation of Glasgow 
at ℎ = 38 m, we get the following latitude fluctuations: 𝜙𝑈 = 0.973206 rad/s, 
 𝜙𝐿 = 0.973165 rad/s, and 𝜙𝑁 = 0.973186 rad/s. Therefore, equation (31) 
gives, 
𝜃𝑈 = 0.597589 rad/s, 𝜃𝐿 = 0.597631 rad/s, and 𝜃𝑁 = 0.597610 rad/s. 
Substituting the values for 𝜃𝑈, 𝜃𝐿, and 𝜃𝑁 into equations (33)-(35), taking 𝛺⊕ =

7.2921150 ∗ 10−5 rad/s, gives the following upper, lower, and nominal 
predicted values for the third and fourth terms of the right-hand-side of equation 
(27) and the right-hand-side of equation (32), 𝛺𝑇3&4𝑈

= −0.0000126376 rad/s, 

𝛺𝑇3&4𝐿
= −0.0000126393 rad/s,       and 𝛺𝑇3&4𝑁

=  −0.0000126385 rad/s. 

Converting these values from rad/s to mas/year requires a multiplicative 
conversion factor of 6.50477*1015 leading to: 𝛺𝑇3&4𝑈

= −8.2204934323 ∗ 1010 

mas/year, 𝛺𝑇3&4𝐿
= −8.2216143848 ∗ 1010 mas/year, and 𝛺𝑇3&4𝑁

=

−8.2210538999 ∗ 1010 mas/year. The numerical range of the third and fourth 
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right-hand-side terms shows how significant their contribution is to the 
measurement of LT precession, and is given by 𝛺𝑇3&4𝑈

−  𝛺𝑇3&4𝐿
, for which we 

get an absolute value of, |𝛺𝑇3&4𝑈
−  𝛺𝑇3&4𝐿

| = 1.12095 ∗ 107  mas/year.  As we 

have seen, this range is due to a fluctuation in 𝑔𝑙𝑜𝑐𝑎𝑙 = ± 100 𝜇Gal and so it is 
confirmed that these terms will dominate the measurement defined by equation 
(27). Results have also been obtained for 𝑔𝑙𝑜𝑐𝑎𝑙 = ± 0 𝜇Gal, 𝑔𝑙𝑜𝑐𝑎𝑙 = ± 50 𝜇Gal, 
𝑔𝑙𝑜𝑐𝑎𝑙 = ± 75 𝜇Gal, 𝑔𝑙𝑜𝑐𝑎𝑙 = ± 125 𝜇Gal, and 𝑔𝑙𝑜𝑐𝑎𝑙 = ± 150 𝜇Gal, and the values 

calculated for  𝑅𝑎𝑛𝑔𝑒𝑇34
= |𝛺𝑇3&4𝑈

−  𝛺𝑇3&4𝐿
|, and plotted on the graph shown 

in Figure 2.2. 

 
 
Figure 2.2 𝑅𝑎𝑛𝑔𝑒𝑇34

as a function of ± fluctuations in the local gravitational acceleration 
in the city of Glasgow, Scotland. 
 
The linear relationship in Figure 2.2 confirms that the lower the measured 
fluctuation in 𝑔𝑙𝑜𝑐𝑎𝑙 the lower the value of the range of terms 𝑇34 in equation 
(27), and therefore the correspondingly reduced dominance of these terms within 
Ω𝐿𝑇𝜃

. Note that a measurement of Earth motion is required to define numerically 
the second term on the right-hand side of equation (27). This will be obtained via 
online data from [20], however a detailed discussion of this is outside the scope 
of this present paper and is reserved for a future publication.  
 
3. Pendulum tracking geometry 
The motion of the pendulum has to be measured in such a way that the extremely 
small component due to LT precession is detectable. The primary requirement is 
for a non-contacting measurement system that can track the pendulum’s motion 

continuously over time, and resolve the LT component. High resolution cameras 
and autocollimators were considered but it was clear that in the case of the former 
the necessary resolution would only be available at extremely high cost, and the 
autocollimator option comes with a considerable additional complication in terms 
of the necessary tracking instrumentation and control. It was decided to pursue a 
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different approach in which an optical beam-crossing system using a small array 
of four laser line generators can be used to detect the presence of the pendulum 
bob. Sequential information extracted from this system can then be used then to 
infer the instantaneous position of the bob periodically, and then the time-base 
associated with the continuous sampling of that data can be used to detect the 
small shifts in the timing of key points in the sequence, to detect and quantify the 
LT precession. We now summarise the three beam crossing geometries, in sub-
sections 3.1 to 3.3.   
  
3.1 Pendulum swing plane orthogonal to the optical transmission path 
This measurement geometry analysis initially assumes that the swing plane of the 
precessing pendulum is instantaneously orthogonal to the optical path of the array 
of four laser line generators. This is one of three cases for which a precise analysis 
is needed to be able to compute the overall time taken to cross the optical 
transmission path. We consider two half-periods, where the pendulum initially 
swings from left to right and then from right to left, to cover one complete swing 
that is perfectly orthogonal to the optical transmission path. The four beams are 
denoted Top Left (TL), Bottom Left (BL), Top Right (TR), and Bottom Right 
(TL), and each of the four transmitters is located exactly opposite a specific 
receiver. When the bob interrupts a beam the associated receiver’s output goes to 

a logical low. An uninterrupted beam generates a logical high at its corresponding 
receiver output.   
   
3.1.1 Pendulum swinging left to right: 

(a) Bob sets TL & BL low as it grazes the beam on approach, 
(b) TL, BL, TR, BR – all low as bob is exactly central, 
(c) Bob sets TR & BR low as it grazes the beam on departure. 

 
3.1.2 Pendulum swinging right to left: 

(a) Bob sets TR & BR low as it grazes the beam on approach, 
(b) TR, BR, TL, BL – all low as bob is exactly central, 
(c) Bob sets TL & BL low as it grazes the beam on departure. 

 
 
3.1.3 Analysis of swing in either direction 
The period of the pendulum is 𝑇 and this is given by, 𝑇 =

1

𝑓𝑛
  sec. Therefore, one 

half period; either a left-to-right or right-to-left swing takes, 
𝑇

2
=

1

2𝑓𝑛
   sec. This is 

the time it takes to swing through one peak-to-peak amplitude. The peak-to-peak 
amplitude is defined by  2𝑎  where  𝑎  is the peak amplitude of swing. The bob 
diameter is 𝑑𝐵 so the time in seconds that it takes the bob to swing through a 
distance equal to its own diameter is, 
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 𝑡𝑑𝐵
=

𝑑𝐵

4𝑎𝑓𝑛
. (36) 

 
To calculate this time, we need to know the bob diameter and the pendulum 
natural frequency of free undumped vibration, and also the peak amplitude. We 
have to fix 𝑑𝐵 and 𝑓𝑛 to build the pendulum, and we can estimate 𝑎, by assigning 
a range of values to it so that we can get a corresponding range of values for 𝑡𝑑𝐵

. 
For this case the bob centre covers distance 2𝑑𝐵 from the instant the bob grazes 
the beam as it approaches, to the instant that it still (just) grazes the beam as it 
departs. So, the overall interrupt time from start to finish for this case is given by 
2𝑡𝑑𝐵

. 
Hence we get, 
 

 𝑡2𝑑𝐵
=

𝑑𝐵

2𝑎𝑓𝑛
=

𝜋𝑑𝐵

𝑎√
𝑔

𝑙0

 (37) 

 

 
Figure 3.1 Beam crossing geometry: case 1, showing plan view of the bob travelling left 
to right, exactly the same principles apply in reverse when the bob is travelling right to 
left. Note also that 𝑙𝑠𝑒𝑛𝑠 > 2𝑎 so that the pendulum can swing freely when moving under 
case 3 - see Figure 3.3 below. Key: TL = Top Left sensor, TR = Top Right sensor, BL = 
Bottom Left sensor, BR = Bottom Right sensor, Tx = laser transmitters, Rx = laser 
receivers. 
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where 𝑔 is the local acceleration due to gravity and 𝑙0 is the effective length of 
the pendulum. The actual time taken for the beam interrupts for the orthogonal 
geometry case depends on the precise geometry of the design. So, the beams are 
designed to be set up so that when the bob is exactly central in its swing it 
interrupts both beams. Very fine mechanical adjustment will be available to set 
this up exactly, using high precision parts that are guaranteed to be stable over 
the planned range of operating temperature.  Therefore, the time is exactly 
governed by twice the diameter of the bob, and is defined by 𝑡2𝑑𝐵

. This is because 
the centre of the bob is at  𝑑𝐵 2⁄   to the left of the beam just when the RH side of 
the bob starts to graze the beam on the approach side, then there is the distance 
between the beams which is defined by 𝑑𝐵, and then the centre of the bob goes 
through 𝑑𝐵 2⁄  again before the LH side of the bob finally stops interrupting the 
beam on the departure side. This principle is the same whether it’s swinging left-
to-right or right-to-left. 
 
3.2 Pendulum swing plane located at an arbitrary angle of precession 
In this case the pendulum has precessed through 𝛺 so that the swing plane is no 
longer orthogonal to the optical transmission path, and instead is at an arbitrary 
precessional angle of 𝛺. In that case the geometry is such that the bob has to cover 
a longer distance 𝑑𝑝𝑝 to pass across the optical transmission path, and that 
distance is given by the following where 𝛺 is in degrees, 
 

 𝑑𝑝𝑝 = 2𝑑𝐵 + (2𝑎 − 3𝑑𝐵)
𝛺

90
. (38) 

 
This means that the time to cover the TL, BL pair and then the TR, BR pair is a 
little longer than for the case of 3.1, and is found as follows, 
 

   𝑡𝑑𝑝𝑝
=

𝑑𝑝𝑝

4𝑎𝑓𝑛
=  

𝜋(2𝑑𝐵+(2𝑎−3𝑑𝐵)
𝛺

90
)

2𝑎√
𝑔

𝑙0

    sec.    (39) 

(where   𝑡𝑑𝑝𝑝
<

𝑇

2
, and 

𝑇

2
=

1

2𝑓𝑛
=

𝜋

√
𝑔

𝑙0

 ). 

This time reaches a maximum as 𝛺 tends to 90° and at that point we move to the 
final geometrical case (given in 3.3 below). Conversely, when 𝛺 = 0 we get 

𝑡𝑑𝑝𝑝
=

𝜋𝑑𝐵

𝑎√
𝑔

𝑙0

  and this is the same as 𝑡2𝑑𝐵
.  So, this case then degenerates down to 

the first geometrical configuration of case 3.1. In general, assuming we approach 
from bottom left (looking down) we have this sequence, 
 

(a) Bob sets TL & BL low as it grazes beam on approach, 
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(b) TL, BL, TR, BR – all low as bob is central, 
(c) Bob sets TR & BR low as it grazes beam on departure, 
(d) Bob sets TR & BR low as it grazes beam on approach, 
(e) TR, BR, TL, BL – all low as bob is central, 
(f) Bob sets TL & BL low as it grazes beam on departure. 

 
3.3 Swinging exactly along the optical transmission path.  
This simple case is shown in Figure 3.3 in which both the beams are continually 
interrupted for the whole of the time that the swing plane of the pendulum is 
aligned with the optical transmission path. This is the case when 𝛺 = 90°. The 
time that the sensors are low over one half period is exactly equal to the half 
period itself. They will stay low for the remaining half period.  
The three cases given above cover all possible motions of the precessing 
pendulum and provide the necessary theoretical basis for designing the 
measurement instrumentation discussed in section 6. 
 
 

 
Figure 3.2 Beam crossing geometry: case 2, plan view of the bob going left to right along 
a path precessed at Ω to the horizontal, same principles apply for right to left (see (a)-(f) 
below). Key: TL = Top Left sensor, TR = Top Right sensor, BL = Bottom Left sensor, 
BR = Bottom Right sensor, Tx = laser transmitters, Rx = laser receivers. 
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Figure 3.3 Beam crossing geometry: case 3, showing plan view of the bob travelling front 
to back along a path exactly aligned with the sensor light paths (Ω = 90°), noting that the 
same principles apply when travelling back to front. Key: TL = Top Left sensor, TR = 
Top Right sensor, BL = Bottom Left sensor, BR = Bottom Right sensor, Tx = laser 
transmitters, Rx = laser receivers. 
 
4. Electromagnetic pendulum exciter system  
4.1 Ellipticity control 
We now summarise the original work of Schumacher and Tarbet [21]. It is 
repeated in full here, because it is central to the effective operation of the practical 
system.   
The methodology for excitation and also ellipticity control first proposed in [21] 
uses two concentric electromagnetic sensing and pusher coils to maintain planar 
motion of the pendulum after launch. This approach has been chosen here over 
parametric excitation of the length [14, 23, and 24], because it offers a 
mechanically more robust and simple solution, with the added and very important 
advantage of offering ellipticity minimisation control that is independent of the 
magnitude of the minor axis of any residual ellipticity after the pendulum has first 
been launched.  This, together with the fact that it does not in any way intrude on 
the natural motion of the Foucault pendulum, makes it by far the best approach 
for pendulum forcing. We start with reference to Figure 4.1, adopted from the 
original work of [21].   
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Figure 4.1 Reproduced from [21] with the permission of the authors. The original caption 
in [21] stated: Planar view of the approximate path of a spherical pendulum with semi-
major axis a and semi-minor axis b that is moving in a counter-clockwise ellipse. The 
suspension is centred on the z-axis above the origin. The pendulum is precessing at rate 
Ω, and in one full cycle the apex advances by a distance ∆y, as suggested by the light 
dotted and rotated ellipse. The impulsive driving force is applied at x = d, and it is 
resolved into components parallel and perpendicular at the major axis. The minor axis 
can be larger or smaller, resulting in a b-dependent magnitude of the transverse force F⊥ 
for a fixed longitudinal force F∥.    
 
The excitation comes from an impulsive force applied electromagnetically to the 
bob, resolved into two components, 𝐹⊥ and 𝐹∥. The parallel component, 𝐹∥ is the 
bigger of the two and overcomes the dissipation in the system, mainly due to 
aerodynamic damping and pivot friction. The transverse component, 𝐹⊥ is used 
to stop the intrinsic precession of the pendulum, and the objective of the analysis 
that follows is to relate this to distance d, which defines the point where the 
impulse excitation force has to occur to stop the unwanted intrinsic precession 𝛺. 
It is shown in [21] that d is independent of b. It is shown in detail in [21] that as 

the pendulum goes from 𝑥 = −𝑎 to 𝑥 = +𝑎 (effectively half a period) it takes 
𝛺𝑇

2
 

seconds, and the associated precession angle is 𝜙. The apex of the ellipse moves 
through distance ∆𝑦. The requirement is therefore for that distance ∆𝑦 to be 
reduced to zero by means of an impulse applied at the time when the bob, 
travelling left to right, crosses the dotted line passing through the point (𝑥𝑝, 0), 
after which it passes on through the distance (𝑎 − 𝑑) to arrive at (𝑎, 0).  The 
momentum associated with the force component 𝐹⊥ (which performs the 
neutralisation of the precession associated with ∆𝑦) is therefore given by, 
 
 𝑚𝛥𝑣𝑦 = 𝐹⊥𝛥𝑡 (40) 

 

Vertical 

dotted line 

passing 

through point 

(𝑥𝑝, 0)  
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where  𝛥𝑣𝑦 is the velocity associated with the displacement ∆𝑦. The time 𝛥𝑡 is 
the duration of the applied force and as 𝛥𝑡 ≪ 𝑇 it is appropriate to use the 
impulsive form of Newton’s second law.  
Now, the response of the pendulum in the x direction is simply expressed by 
𝑥(𝑡) = 𝑎 𝑠𝑖𝑛 𝜔0𝑡 where the natural frequency of free undamped oscillation of the 

pendulum is defined by 𝜔0 = √
𝑔

𝑙
 and we note that it takes a definable time 𝑡𝑑 for 

the bob to travel from the origin to the dotted line shown in Figure 4.1 passing 

through the point (𝑥𝑝, 0). If  𝑥(𝑡) = 𝑑 then 
𝑑

𝑎
= 𝑠𝑖𝑛 𝜔0𝑡𝑑, and this leads to 𝑡𝑑 =

1

𝜔0
𝑠𝑖𝑛−1 𝑑

𝑎
. The geometry of the intrinsic precession shown in Figure 4.1 leads to, 

 

 𝛥𝑦 = 𝛥𝑣𝑦 (
𝑇

4
− 𝑡𝑑) = 𝑎

𝛺𝑇

2
 (41) 

 
and combining 𝑡𝑑 and the first part of equation (41) gives, 
 

𝛥𝑦 = 𝛥𝑣𝑦 (
𝑇

4
− 𝑡𝑑) = 𝛥𝑣𝑦 (

𝑇

4
−

1

𝜔0
𝑠𝑖𝑛−1

𝑑

𝑎
) =

𝛥𝑣𝑦

𝜔0
(

𝑇𝜔0

4
− 𝑠𝑖𝑛−1

𝑑

𝑎
)  

 

where  
𝑇𝜔0

4
=

𝜋

2
  because 𝜔0 = 2𝜋𝑓0   and 𝑓0 =

1

𝑇
 .  So 𝜔0 =

2𝜋

𝑇
  and  

𝑇𝜔0

4
=

𝜋

2
 . 

 

From this, one gets  𝛥𝑦 =
𝛥𝑣𝑦

𝜔0
(

𝜋

2
− 𝑠𝑖𝑛−1 𝑑

𝑎
). 

Using the inverse trigonometrical identity 𝑐𝑜𝑠−1 𝐴 =
𝜋

2
− 𝑠𝑖𝑛−1 𝐴  the last 

equation simplifies down to, 

 𝛥𝑦 =
𝛥𝑣𝑦

𝜔0
𝑐𝑜𝑠−1 𝑑

𝑎
 (42) 

 
The force components 𝐹⊥ and 𝐹∥ are shown in Figure 4.1 at an arbitrary point on 
the ellipse, defined by coincidence with the dotted line passing through the point 

(𝑥𝑝, 0) and at angle 𝜃 to the x-axis. So, we have 
𝐹⊥

𝐹∥
= 𝑡𝑎𝑛 𝜃 =

𝑦

𝑑
. An ellipse is 

defined by (
𝑥

𝑎
)

2
+ (

𝑦

𝑏
)

2
= 1  and from the equation above we have 𝐹⊥ = 𝐹∥

𝑦

𝑑
 , 

so the ellipse equation gives  𝑦 = 𝑏√1 − (
𝑥

𝑎
)

2
  and therefore we get the following 

for 𝐹⊥, 
 

 𝐹⊥ = 𝐹∥
𝑏

𝑑
√1 − (

𝑑

𝑎
)

2
 (43) 
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This gives the transverse impulse force component 𝐹⊥ in terms of the longitudinal 
component 𝐹∥, 𝑎, 𝑏, and 𝑑. Next, we take equations (40)-(43) inclusive, and 
Olsson’s expression for Foucault pendulum intrinsic precession [22] which is 

given by, 
 

 𝛺 =
3

8
𝜔0

𝑎𝑏

𝑙2 . (44) 

 
Then first of all,  𝛥𝑦 can be expressed by using equations (41) and (44), 
 

 𝛥𝑦 =
1

2
𝑎 (

3

8
𝜔0

𝑎𝑏

𝑙2 ) (
2𝜋

𝜔0
) (45) 

 
Next equations (40), (42), and (43) are invoked, to get, 
 

 𝛥𝑦 =
1

𝑚
𝛥𝑡

1

𝜔0
𝐹∥

𝑏

𝑑
√1 − (

𝑑

𝑎
)

2
𝑐𝑜𝑠−1 𝑑

𝑎
  =   

𝐹∥𝛥𝑡

𝑚𝜔0

𝑏

𝑑
√1 − (

𝑑

𝑎
)

2
𝑐𝑜𝑠−1 𝑑

𝑎
 (46) 

 
Finally, if the right-hand sides of equations (45) and (46) are equated then it is 
possible to obtain, 
 

1

2
𝑎 (

3

8
𝜔0

𝑎𝑏

𝑙2
) (

2𝜋

𝜔0
) =

𝐹∥𝛥𝑡

𝑚𝜔0

𝑏

𝑑
√1 − (

𝑑

𝑎
)

2

𝑐𝑜𝑠−1
𝑑

𝑎
. 

 
This reduces down to, 

3

8

𝑎2𝑏𝜋

𝑙2

𝑚𝜔0

𝐹∥𝛥𝑡
=

𝑏

𝑑
√1 − (

𝑑

𝑎
)

2

𝑐𝑜𝑠−1
𝑑

𝑎
. 

Then further to, 

 
3

4
𝑄

𝑎𝑏

𝑙2 =
𝑏

𝑑
√1 − (

𝑑

𝑎
)

2
𝑐𝑜𝑠−1 𝑑

𝑎
 (47) 

 
where, 
 𝑄 =

𝜋

2

𝑚𝑎𝜔0

𝐹∥𝛥𝑡
. (48) 

 
It can be seen that 𝑏 cancels in equation (47), which is an important result in itself. 
The quantity represented by 𝑄 is formally defined as the quality factor ‘Q’, and 

in equation (48) this is the ratio of the momentum of the bob at the zero crossing 
and the momentum kick that it receives when the impulsive force is applied. 
Equation (47) is simplified further in [21] by introducing the nondimensionalised 

quantities 𝛼 =
𝑎

𝑙
  and 𝛿 =

𝑑

𝑎
 , to lead to this expression of nullification, 



 
 
 
 

 
 ON THE TERRESTRIAL MEASUREMENT OF FRAME-DRAGGING  19 

 

 

 

 
3

4
𝑄𝛼2 =

1

𝛿
√1 − 𝛿2 𝑐𝑜𝑠−1 𝛿. (49) 

 

Figure 4.2 Reproduced from [21] with the permission of the authors. The original caption 
in [21] stated: (a) For three pendulum lengths (L) with amplitude of 0.15 meter, the 

relationship of the scaled driving distance (𝛿 =
𝑑

𝑎
) versus the quality factor Q for the 

oscillation. Curves are for an l = 3.0 meter (solid blue), 2.0 meter (dashed red) and 1.0 
meter pendulum (dotted green). (b) For the same pendulum lengths as in (a), the distance 
versus time relationship for the driving pulse. 
 
High 𝑄 pendulums need to be pushed closer to the origin, whereas dissipative 
pendulums need to be pushed further out. This is shown in Figure 3 in [21], 
reproduced as Figure 4.2 here. We can relate the quality factor to the free decay 
period directly by using the classical response of a damped harmonic oscillator  

𝑥(𝑡) = 𝑎𝑒−
𝑡

𝜏 𝑠𝑖𝑛 𝜔0𝑡,  therefore the momentum loss between  𝑡 = 0  and  𝑡 =
𝑇

2
  

is given by  𝑚𝑎𝜔0 (1 − 𝑒−
𝑇

2𝜏) ≅ 𝑚𝑎𝜔0
𝑇

2𝜏
. So, the quality factor can therefore be 

expressed as, 
 𝑄 =

𝜋

2

𝑚𝑎𝜔0

𝑚𝑎𝜔0
𝑇

2𝜏

=
𝜋𝜏

𝑇
. (50) 

 
Substituting equation (50) into (49) leads to the following after restoring the 
dimensional quantities, 

3

4
(

𝜋𝜏

𝑇
) (

𝑎

𝑙
)

2

=
𝑎

𝑑
√1 − (

𝑑

𝑎
)

2

𝑐𝑜𝑠−1
𝑑

𝑎
. 
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We know that  
𝜋

𝑇
=

𝜔0

2
  and  𝜔0 = √

𝑔

𝑙
  so the equation above becomes, 

 

 
3

8
√

𝑔

𝑙
(

𝑎

𝑙
)

2
𝜏 =

√𝑎2−𝑑2

𝑑
𝑐𝑜𝑠−1 𝑑

𝑎
. (51) 

 
It is shown in [21] that 𝐹⊥ and 𝐹∥ are related through the dipole-dipole repulsion 
effect within the magnetic field relations, and within that relationship that there 

is a minor dependence on 𝑏, through the ratio (
𝑏

𝑑
)

2
. However, this ratio is 

numerically very small, of 𝒪(0.01), in comparison with the principal terms in the 
expression, so, as shown in [21], it is entirely justifiable to ignore this 
dependency. The pusher ‘on time’ 𝑡𝑑 can now be calculated from the following 
algorithmic procedure: 
(a) measure experimentally the period 𝑇, (b) select an amplitude 𝑎 based on 
suitable launch displacement IC, (c) measure experimentally the free decay 
period 𝜏, (d) select nominal pendulum length 𝑙, (e) compute 𝛼, (f) then compute 
𝑄 from equation (50), (g) use equation (49) to get 𝛿, and hence 𝑑, (h) finally, 

calculate 𝑡𝑑 from 𝑡𝑑 =
1

𝜔0
𝑠𝑖𝑛−1 𝑑

𝑎
.     

 
4.2 Electromagnetic excitation of the pendulum 
The equations of motion for the Foucault pendulum have been derived by 
Cartmell et al [23] in terms of local Cartesian coordinates, and are then developed 
there for the case of principal parametric excitation of the length [23, 24]. Here 
we exclude parametric excitation and instead replace this with a generalised force 
term in each equation representing the 𝑥 and 𝑦 components of the applied 
electromagnetic dipole force respectively. Reproducing the equations of motion 
for the unforced pendulum from [23] and including the generalised forces 𝑄𝑥 and 
𝑄𝑦, 
 
 𝑥̈ + 𝜂|𝑥̇|𝑥̇ − 2𝑦̇𝛺𝑠𝑖𝑛𝜙 − 𝑥𝛺2 +

𝑔𝑥

𝑙√1−
𝑥2+𝑦2

𝑙2

= 𝑄𝑥 (52) 

 𝑦̈ + 𝜂|𝑦̇|𝑦̇ + 2𝑥̇𝛺𝑠𝑖𝑛𝜙 − 𝑦𝛺2𝑠𝑖𝑛2𝜙 + 𝑟𝛺2𝑠𝑖𝑛𝜙𝑐𝑜𝑠𝜙 +  
𝑔𝑦

𝑙√1−
𝑥2+𝑦2

𝑙2

= 𝑄𝑦. (53) 

 
The excitation system, based closely on the proposals in [21], comprises two 
concentric coils with an outer sense coil and an inner exciter coil. The 
electromagnetic dipole force results from the interaction from a permanent 
neodymium magnet in the base of the bob and the inner exciter coil as the bob 
passes above. The exciter coil is driven by a high current low voltage supply 
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which is pulsed electronically as the bob is detected by the outer sense coil, and 
so the form of the electromagnetic force pulse is broadly square, and in phase 
with the pendulum swing as the bob passes across the coils, noting that this is 
where the swing velocity is at a maximum. From this we get the generalised 
forces, as follows, 
 
 𝑄𝑥 = 𝐹𝑥 cos (tan−1 𝑦

𝑥
) ,  (54) 

 𝑄𝑦 = 𝐹𝑦 cos(tan−1 𝑦

𝑥
) (55) 

 
The excitation components 𝐹𝑥 and 𝐹𝑦 are pulsatile and can be modelled by use of 
an inverse tangent function where the argument is the relevant component 
velocity divided by a scaling parameter 𝑘, and suitable pulse shaping, with dipole 
force magnitude 𝐹𝑑𝑖𝑝. Clearly 𝐹𝑥 and 𝐹𝑦 are analogous to 𝐹∥ and 𝐹⊥ in section 4.1 
but we use the notation 𝐹𝑥 and 𝐹𝑦 here in order to distinguish between the uses of 
these forces for ellipticity control and for general excitation of the pendulum.  
After division through by the bob mass 𝑀 the components can be stated as, 
 

 𝐹𝑥 =
2

𝜋

𝐹𝑑𝑖𝑝

𝑀
tan−1 (

𝑥̇

𝑘
), (56) 

 𝐹𝑦 =
2

𝜋

𝐹𝑑𝑖𝑝

𝑀
tan−1 (

𝑦̇

𝑘
) (57) 

 
Substituting equations (56) and (57) into (54) and (55) respectively leads to the 
full forms for the generalised forces, 
 

 𝑄𝑥 =
2

𝜋

𝐹𝑑𝑖𝑝

𝑀
tan−1 (

𝑥̇

𝑘
) cos (tan−1 𝑦

𝑥
), (58) 

 𝑄𝑦 =
2

𝜋

𝐹𝑑𝑖𝑝

𝑀
tan−1 (

𝑦̇

𝑘
) sin (tan−1 𝑦

𝑥
). (59) 

 
Equations (58) and (59) are substituted into (52) and (53) respectively and then 
the system can be numerically integrated, using practical design data.  
Firstly, we show the response of the unforced pendulum just to initial conditions 
in Figure 4.3, for which 𝐹𝑑𝑖𝑝 = 0. The damping is aerodynamic and minimal, so 
the pendulum shows some precession driven by the rotation of the Earth, Ω⨁. 
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Figure 4.3 Pendulum responses over 1 hour at Glasgow for no excitation (𝐹𝑑𝑖𝑝 = 0). Red 
dot: displ. ICs (𝑥0, 𝑦0) = (0.1, 0) 𝑚, blue dot: end points (𝑥𝑡𝑒𝑛𝑑 , 𝑦𝑡𝑒𝑛𝑑), velocity ICs are 
𝑥̇0 = 𝑦̇0 = 0

𝑚

𝑠
. Data: 𝑙0 = 4 𝑚, 𝑔 = 9.8156 𝑚 𝑠2,⁄   Ω⨁ = 7.2921150 ∗

10−5  𝑟𝑎𝑑 𝑠,⁄   𝜙 = 0.9750 𝑟𝑎𝑑, 𝑟 = 6363.18 ∗ 103 𝑚, 𝑚 = 2 𝑘𝑔, 𝜌 =
1.189 𝑘𝑔 𝑚3, 𝐶𝐷 = 10−6,   𝑅𝑏𝑜𝑏 = 0.0463134 𝑚,   𝑡𝑒𝑛𝑑 = 3600 𝑠⁄ . Axes scaled in 
metres. 

 
In Figure 4.4 the system is under an electromagnetic excitation where 𝐹𝑑𝑖𝑝 =

0.05 𝑁, 𝑘 = 0.01,  and 𝑡𝑒𝑛𝑑 = 360 𝑠, all other data are identical to that of Figure 
4.3. Amplification is evident, and is based directly on the form of electromagnetic 
excitation used, such that this excitation can effectively eradicate the tendency to 
ellipticity for even relatively short pendulums [21].  
 

 
Figure 4.4 Pendulum responses over 6 minutes at Glasgow for excitation 𝐹𝑑𝑖𝑝 = 0.05 𝑁. 
Red dot: displ. ICs (𝑥0, 𝑦0) = (0.1, 0) 𝑚, blue dot: end points (𝑥𝑡𝑒𝑛𝑑 , 𝑦𝑡𝑒𝑛𝑑), velocity ICs 
are 𝑥̇0 = 𝑦̇0 = 0

𝑚

𝑠
. Data: 𝑙0 = 4 𝑚, 𝑔 = 9.8156 𝑚 𝑠2,⁄   Ω⨁ = 7.2921150 ∗

10−5  𝑟𝑎𝑑 𝑠,⁄   𝜙 = 0.9750 𝑟𝑎𝑑, 𝑟 = 6363.18 ∗ 103 𝑚, 𝑚 = 2 𝑘𝑔, 𝜌 =
1.189 𝑘𝑔 𝑚3, 𝐶𝐷 = 10−6,   𝑅𝑏𝑜𝑏 = 0.0463134 𝑚,   𝑡𝑒𝑛𝑑 = 360 𝑠⁄ , 𝑘 = 0.01. Axes 
scaled in metres. 
 
The generalised forces in equations (58) and (59) can be plotted against time and 
then related in terms of phase to the pendulum responses in 𝑥 and 𝑦, as shown in 
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the plots of Figure 4.5 taking a snap-shot in time of 𝑄𝑥 and also of the response 
in 𝑥. The mid-point of the excitation pulse 𝑄𝑥 coincides with the zero-crossing of 
the pendulum in 𝑥 where it reaches its maximum velocity. The very high 
amplitude gain in 𝑥 for the particular level of generalised force applied, is quite 
evident here. 
 

     
Figure 4.5 Left plot: a snap-shot of the square-wave generalised force 𝑄𝑥 (N) against time 
(s). Right plot: a snap-shot of the response of the pendulum in 𝑥 (m) against exactly the 
same window of time (s), both plots for the data of Figure 4.4. 
 
5. Conclusions 

In this paper a derivation is summarised for a simple expression for the Lense-
Thirring precession of a test mass in the vicinity of the Earth, using 
gravitoelectromagnetism, and under the restrictions of locally flat Euclidean 
space, weak fields, and non-relativistic velocities. The North Pole is used as a 
basis for predictive comparison and the approximate expression for Lense-
Thirring precession derived in this paper shows a very good level of agreement 
with previously published predictions for that location (~0.2%). The prediction 
also accounts for numerically symmetrical latitudes either side of the equator and 
for Earth oblateness. From there the paper discusses how a practical terrestrial 
measurement of Lense-Thirring precession may be made, referring to the seminal 
proposals of [15] for a possible polar measurement. An analysis of the correction 
term needed for non-polar measurement location is given and it is shown that 
minute variations in the local acceleration due to gravity, 𝑔, over time at non-
polar locations generate correspondingly large fluctuations in the correction 
terms. These fluctuations are of a magnitude which would swamp the required 
Lense-Thirring precession, and so it is concluded that appropriate signal 
processing analysis needs to be introduced in order to recognise this part of the 
composite data and extract it accordingly. This is reserved for further work 
planned for the near future. The paper then goes on to propose a methodology for 
optical tracking geometry from which relativistic deviations from the Newtonian 
precession of the pendulum bob can be detected and logged against time. Three 
sub-geometries are proposed here, with the first and third of these merely the two 
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extreme cases of the second variant, resulting in a single algorithmic procedure 
which can be suitably embedded in the data-logging software. From here an 
ingenious analysis proposed in [21] is examined in some detail, in order to 
highlight how the work of [21] on an electromagnetic pendulum pusher might be 
applied to the pendulum system under discussion. The objective is to show that 
this electromagnetic system could then be analysed in the context of the 
generalised forces operating on the pendulum, and a discussion of this is given 
here, showing that the periodic square-wave pulsatile force profile needed to 
implement the pusher concept of [21] can be arranged in practice. The phase 
relationship between the generalised force and the response can be seen directly 
in the results given, confirming that the centres of the square wave excitation 
pulses, in both the positive and negative excursions, coincide exactly with the 
zero crossings of the response of the pendulum where it is moving with maximum 
velocity. This confirms the utility of the design given in [21] in the current 
context, and provides a framework for practical implementation and test.  
In overall terms this paper provides a series of coherent analyses that are required 
as a basis for building an instrument using a Foucault pendulum for the terrestrial, 
non-polar, measurement of the frame-dragging effect of Lense-Thirring 
precession. Whilst the achievement of this goal is still a work in progress the 
proposals summarised in this paper provides a considerable step forward.                
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ABSTRACT 
 

The contact fatigue is a localized phenomenon that occurs in highly 
stressed local zone of the material under the loaded contact region and as such is 
highly nonlinear problem. This phenomenon exists in almost all real mechanical 
systems with contact strains coupled with other sources of nonlinear behaviour. 
The improvements of existing procedures and methods for standard calculation 
of contact fatigue have a potential to give significant contribution to increase 
accuracy of calculation of life assessment, reliability and efficiency of complex 
mechanical systems. This paper gives the basic explanation of the Theory of 
critical distances and its application on direct estimation of fatigue crack 
initiation in contact zones. Analysis of contact fatigue when the contact zones 
are subjected to additional nonlinearities such as geometry manufacturing 
deviations, geometry microscale-damages or nonlinear material characteristics 
are presented in detail. Few different real multi-nonlinear problems are used for 
analysis performing. The benefits of presented approach are discussed by detail 
analysis of the obtained results, and could be based on the increasing accuracy 
of contact fatigue prediction considering all existing nonlinearities in loaded 
contact zones of complex mechanical systems. 
 
Key words: contact, fatigue, coupled nonlinearities, Finite Element 
Analysis, Theory of Critical Distances 
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1. Introduction 
 
The everyday use of mechanical systems with various mechanical 
elements would be impossible without contact between parts of elements. 
It is still particularly difficult to predict the failures which occur at these 
locations or contact. The getting the right picture in such a cases or basic 
stress analysis of contact situations is problematic in itself because this 
analysis is strongly affected by factors which are difficult to estimate, 
such as the degree of friction and adhesion between moving bodies. At 
same point of two mechanical elements in contact, the cracking is a 
common result or precursor of contact-related failures, suggesting the use 
of fracture mechanics in their solution. Short cracks and non-propagating 
cracks are frequently involved as a result of crack growth through a 
rapidly decaying stress field [1, 2, 3]. 
For many decades, any discussion about contact mechanics was more or 
less synonymous with Hertzian contact where the contacting bodies are 
elastic with simple profiles and most of the applications were to 
traditional machine elements such as rolling bearings, gears and cams. 
However, in almost all mechanical or engineering systems comprising 
more than a single object, loads are transmitted between the components 
by contact, and the nature of this interaction is often critical in 
determining the overall system behaviour. This transmission of a loads 
through material, particularly in advanced materials with or without 
modification by surface engineering become nonlinear problem from 
mechanistic point of view only. But if we add local material 
characteristics like presence of non-metallic inclusions and carbides, the 
main task, predicting a failure at contact become more difficult [4-6]. 
To solving such a problem, the possible path is multidisciplinary 
approach. Scientist dealing with solid state mechanics, theoretical 
mechanics, metallurgy and mechanical engineering have to work together 
to create procedure for contact fatigue prediction, applicable to various 
geometries and microstructural features. Only investigations of material 
characteristics and material behaviour in real load cases simultaneously 
with calculations of real load distribution and stresses in contact zones of 
various mechanical elements, could make step forward in solving this 
problem.  
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2. Theory of Critical Distance 

 
The Theory of Critical Distances (TCD) is a method or group of methods 
for the prediction of failure on engineering components and structures 
with various types of stress raisers, developed in last two decades. Basics 
of TCD are known, the main concept is that failure usually occurs due to 
the initiation and fact that materials possess inherent length scales which 
are related (in complex ways) to their microstructure and modes of 
deformation and damage. The interaction between the length scale and 
the stress gradient determines whether crack will occur from a given 
feature. The second important thing or assumption about TCD is that any 
type of stress raiser could be considered in the same way [1]. 
The local stresses around a notch, or any other stress concentration, 
contact for example, can be represented in a simple form by a diagram of 
the stress as a function of distance from stress concentration raiser, fig.1. 
We will assume that the stress analysis is an elastic one, and that the 
maximum normal stress is drawn. Poor accuracy can be expected if 
prediction of fatigue life is based on the range of stress at the stress raiser 
(i.e., at a distance of zero in fig.1). The use of plastic strain range instead 
of stress range has the disadvantage that an elastic–plastic analysis must 
be performed (or approximated). In any case it will be still quite 
inaccurate for the prediction of high-cycle fatigue in features with high Kt 
- stress concentration factor, [1, 3]. This means that the first step in the 
application of critical distance methods is to use them explicitly, 
generating stress–distance diagram such as fig.1 and read the necessary 
stress values from Finite Element Analysis (FEA). 

 

 
Fig.1. Schematic explanation of TCD 
point method 

The second step is calculating the value of the critical distance. The 
underlying theory was suggested by and validated against experimental 
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data by Taylor, [1, 3]. Basically, it is essentially a combination of stress 
raiser fatigue and linear elastic fracture mechanics (LEFM) concepts. The 
assumption that the TCD point method and TCD line method are valid 
for all types of stress raisers, allows to define the stress–distance diagram 
at the fatigue limit for a cracked body, [2], for which the stress intensity 
range is equal to the threshold value for the material: ΔK = ΔKth. The 
result is that the critical distance for the point method is L/2, [1, 3], 
where: 

𝐿 =
1

𝜋
(

𝛥𝐾𝑡ℎ

𝛥𝜎0
)

2

    (1) 

In this equation Δσ0 is the fatigue limit of standard, unnotched specimens 
of the material, and ΔKth is threshold stress intensity. The fact is that is 
often difficult to define the accurate fatigue limit, the stress range 
corresponding to a given number of cycles. The range from 1 to 10 
million is generally used for determination of fatigue limit. It has been 
demonstrated by comparison with experimental data [3] that the use of 
this value of Δσ0 for L gives good predictions in many different materials 
[1]. 
The application of TCD in solving fretting fatigue was successfully so 
there is no reason why TCD couldn't be applicable to contact fatigue. In 
practice, however, contact fatigue normally involves a moving point of 
contact, as in rolling contact between gear teeth and bearing components. 
Whilst the initiation and early growth of the crack may be similar to that 
in standing fatigue, the moving force has a considerable effect on the 
subsequent crack growth and the tendency for the crack to turn back to 
the surface and cause spalling. Thus, the TCD is useful in modelling the 
early stages of this process (perhaps for predicting the limit below which 
only non-propagating microscopic cracks will occur). But, a crack-
propagation analysis would be needed to describe the entire process, [9, 
10]. Particular problem is application of TCD on small scale due to the 
fact that the measured mechanical properties of a material are often 
affected by the size of the test specimen used. It is clear that there are 
significant differences between the results obtained from macroscopic 
specimens and from microscopic specimens of this material. This can be 
explained in terms of the relative importance of surface grains. Grains 
which lie on the surface of the specimen can deform more easily than 
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internal grains because they are less constrained by the grains which 
surround them [11]. 
 
3. Contact of two half-cylinders with carbides 
 
The problem of bodies in contact, with the emphasize of engineering 
application was the subject of many papers [12, 13, 14]. However, the 
usual assumption was that the bodies in contact are without significant 
internal features. In this paper a particular theoretical contact problem of 
two pressure loaded half-cylinders in contact is used for developed 
methodology investigation. The additional nonlinearity is modelled as a 
case of material nonlinearity simulated by carbides occurrence under the 
contact surfaces of these half-cylinders made by steel. The half-cylinders 
are made by AISI 308 steel, with Cr2C3 carbides existing at subsurface 
layer with dimensions and positions obtained by experiment [15]. Data 
about mechanical properties of this particular carbide was taken from 
literature data [16-18]. The basic mechanical properties of this type of 
carbide, used in the investigation performed in this research are:  
 Hardness, Rockwell: 91 HRV,  
 Vickers Microhardness:  2280 HV1, and  
 Modulus of Elasticity: 373 - 386 GPa. 

In the previous works the Finite Element Analysis (FEA) is performed in 
order to discuss the influence of the orientation and dimension of 
carbides on Hertz stresses for two half-cylinders in contact [19], while in 
the research presented in this paper, the series of nonlinear numerical 
Finite Element Analysis (FEA) is performed in order to discuss the 
influence of the position of a rhombohedral carbide in correlation with 
the point of contact of the half-cylinders in non-loaded state. The both of 
the modelled half-cylinders have a diameter of 10 mm. In accordance 
with the real cases [15], the modelled carbide has a rhombohedral scape 
with dimension 50 x 50 μm, and was positioned to 10, 25 and 50 μm 

below the contact surface (parameter b in fig.2), in the axis of principal 
force, or is shifted 25 μm (parameter a in fig.2) from the main axis and 
on the depth of 25 and 50 μm. These five cases are defined by parameters 
a and b in Tab.1 
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Fig.2. Shape and position of carbide under contact point 

Tab.1. Values of the position parameters for the modelled cases 
Carbide position a b 

Case 1 0 50 μm 
Case 2 0 25 μm 
Case 3 0 10 μm 
Case 4 25 μm 50 μm 
Case 5 25 μm 25 μm 

In order to make a problem solvable, a few approximations were 
selected: 
 In real case there is a field of residual stress in vicinity of carbide as 

a result of difference of mechanical and physical properties (density, 
heat properties, etc) between matrix (AISI 308) and particular 
carbide. In this model this field of residual stress is neglected; 

 Approximation of 3D problem on 2D case (Plane stress analysis is 
performed in FEA); 

 Simple shape of carbide – due to the orientation high and low stress 
raiser is assumed;  

 Different orientation of carbide on fixed depth; and 
 Size of carbide in FEA model is approximated to a real case. 

Fig.3 shows the results for normal stress distribution for ideal isotropic 
material without imperfections [19] required for future comparison with 
the investigated problem. Fig.4 shows the FEA model developed for the 
numerical nonlinear calculations of stress-strain state of the half-
cylinders in contact. The 2D four-nodes iso-parametric type of finite 
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elements is used for model discretization, as well as the ANSYS 2019 R3 
software for nonlinear FEA performing. Fig.5 shows the position and 
orientation of carbide for two of the series of modelled cases. 

 
Fig. 3. Normal stress distribution for ideal isotropic material  

 

 
Fig. 4. FEA model for 
two cylinders in contact 
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a) 

 
b) 

Fig. 5. Position of a carbide: a) Case 1; b) Case 5 

 

4. Results and discussion 
 
The results obtained by series of FEA calculations are analyzed and 
discussed in order to make conclusions about the influence of the carbide 
position on the stress state of the modelled solids in contact, as well as 
for creating the diagrams for TCD applying. The strain-stress state of the 
modelled contact zone with material nonlinearity is analyzed under load 
conditions defined with external pressure force of 5 KN. 
The obtained results for the equivalent VonMises stresses as well as for 
the normal pressure stresses and plane shear stresses in the investigated 
contact zone with multi-nonlinearities for the series of calculated cases 
are presented in fig.5, fig.6 and fig.7 respectively. 
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a) Case 1 

 
b) Case 2 



 
 
 
 
 
36 I. ATANASOVSKA AND D. MOMČILOVIĆ 

 

 
 

 
c) Case 3 

 
d) Case 4 
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e) Case 5 

Fig. 5. VonMises stresses 
 

 
a) Case 1 
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b) Case 2 

 
c) Case 3 
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d) Case 4 

 
e) Case 5 
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Fig. 6. Normal pressure stresses 

 

 
a) Case 1 

 
b) Case 2 
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c) Case 3 

 
d) Case 4 
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e) Case 5 

Fig. 7. Plane shear stresses 

 

The analysis of the FEA results shown in contour plots of stress 
distributions at contact zone with and without material nonlinearity 
(fig.3, fig.5-7) lead to the conclusions about the influence of the position 
and orientation of this type of multi-nonlinearities on the increasing 
stresses, ie. decreasing load capacity of real elements in contact. The 
influence coefficient Kc is defined as: 

𝐾𝑐 =
𝜎𝑤𝑖𝑡ℎ 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 𝑛𝑜𝑛−𝑙𝑖𝑛𝑒𝑎𝑟𝑖𝑡𝑦

𝜎𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 𝑛𝑜𝑛−𝑙𝑖𝑛𝑒𝑎𝑟𝑖𝑡𝑦
    (2) 

and the values of this coefficient for the particular theoretical case 
considered in this paper are presented in Table 2.  
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Tab.2. Values of the coefficient Kc calculated for the normal pressure stresses 
Carbide position σp (MPa) Kc (/) 

without material non-linearity 324 1.0 
Case 1 669 2.065 
Case 2 646 1.993 
Case 3 863 2.663 
Case 4 683 2.108 
Case 5 759 2.343 

In order to apply TCD on the particular multi-nonlinear problem which 
was researched in this paper, the diagrams for the stress gradients are 
drawn based on the FEA results. The diagrams for normal pressure 
gradients in basic half-cylinder material for cases 1, 2 and 3 are presented 
in fig. 8 comparatively for different cases (marked in tab.1 as cases 1, 2 
and 3), as well as in fig.9 comparatively for the basic material and 
carbide’s material for the same modelled cases.  

 
Fig. 8. Normal pressure gradients under contact surface for basic material 
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Case 1 Case 2 

 Case 3 
Fig. 9. Normal pressure gradients – basic material vs carbide 

 
From the diagrams above it is clear that the raise internal stress occurs in 
subsurface zone. For this particular base material AISI 308, the critical 
length parameter L/2 is 50µm, and it is clear from the diagrams shown in 
fig.9 that the crack initiation in the sub-surface zone could be appear in 
the presented problem with future carbide shifting near the contact 
surface. 
 
5. Conclusions 
 
The general conclusion based on the obtained results for stress 
distributions at contact zones is that the closer to the surface, the greater 
is the influence of the carbide on the change of stress state, regardless of 
whether equivalent, normal or shear stresses are observed. At a certain 
small distance from the surface, in this study it is 10 µm, there are 
multiple stress peaks of approximate same values, both in the base 
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material at the contact surface and in the carbide on its outer surface with 
which it borders the base material, which can lead to stress 
concentrations and fatigue crack occurrence below the contact surface. 
This is a particularly significant result because the available studies of the 
contact phenomenon of real elements and their calculations do not 
introduce coefficients of the influence of the presence of material non-
linearities of this type, although, as it could be seen from this research, 
they can lead to a significant decrease of the load capacity. This also 
means that modification of TCD toward micro scale can lead to better 
quantification subsurface stress raisers, in case of contact stress. It is 
important to take into account superposition with real stress field around 
carbides which can lead to promoting conditions for premature crack 
initiation. Future investigation and discussion will present how variation 
of dimensions, number and position of carbides impact to the Hertz 
stresses and the proposed method for assessment of crack initiation 
conditions. 
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ABSTRACT 
 

Motion dynamics of carrier conveyor dictates motion dynamics of 
powder or granular materials which are being transported. The conveyor 
conveyor should have oscillatory motion with certain velocity. Trajectory 
of carrier conveyor should be set so that it creates complex oscillatory 
motion of powder or granular materials. This should cause optimal motion 
of transported material in regards of velocity and mass flow. This is 
possible since the analysis of the system indicates that it can be recognized 
as typical robotic system with rigid and elastic elements. Dynamic and 
kinematic models of conveyors for powder and granular materials are 
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developed in this paper. The effects during and after collision of 
motor anchor and elastic carrier of conveyor are also modeled in this paper. 
This is important process since this phenomenon is present in the 
realization of the transportation process. The mathematical model of the 
mechanism of the conveyor is highly non-linear. 

 
1. Introduction 

 
Vibratory conveying mechanism represents system which by carrying out 
and forming of elastic effects realizes the task of motion of bulk and 
particulate materials. This system is used in many material processing 
technologies, for example: drying, dust collection, classification, dosing, 
compaction, crushing, dehydration, etc. 
 The mathematical models used in the associated control structures 
are based on appropriate simplifications. Firstly, the impact between 
vibratory conveyor base and its elastic supports is neglected. In order to 
obtain a high quality estimate at the output of the state observer, and 
therefore accomplish an appropriately high performance and (or) control 
quality, it is necessary to have a detailed mathematical model of the 
resonant vibratory conveyor with electromagnetic excitation, which takes 
into account the neglected effects mentioned above. The previously 
mentioned reasons are the main motivation for deriving a more detailed 
mathematical model of the resonant vibratory conveyor presented in this 
paper. Derivation of the mathematical model is based on calculation of the 
kinetic and potential energies, dissipative function of the mechanical 
system, and Lagrangian formulation, as well. Also, a set of simulation 
results is presented and compared to the previously published papers. 
 Based on the same principle defined in papers [1]-[5], the elasticity 
of composite spring is introduced in the mathematical model of vibratory 
conveying mechanism. 
 The effect of the collision is practically unavoidable in contact tasks 
transporter work. Chumenko [6] was the first who gave the analysis of 
collision of the robot with the environment. The papers [7], [8] observe the 
influence of the friction on bodies in collision. Hurmuzlu and Marghitu [9] 
consider the collision of absolutely rigid kinematic chains in more contact 
points. Tornambe [10] considers the problem of collision from the point of 
elasto-dynamic so that the collision was modeled by the method of 
distributed masses. In [11], the impact of the collision is modeled. On the 
same principles it is modeled in this paper. 
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 A number of new effects have been introduced in this paper in 
comparison to the procedure for defining the mathematical model of the 
conveyors mechanism in relation to the published papers [12], [13]. 
 The Rayleigh's angle  is defined in [14] and introduced in this paper 
as real characteristic of composite spring 
Procedure of defining the dynamic model and modeling of collision for 
observed elastic system with all elements of coupling is presented 
completely as well as with dynamic effects of present forces defined in 
Section 2. We presented the kinematic model and the procedure of the 
„direct kinematics” solutions in Section 3. Section 4 analyzes simulation 
example for motion dynamic of a transporter with one flexible composite 
spring and three more springs. Section 5 gives some concluding remarks. 

 
2. Dynamic model of conveyor mechanism 

 
Vibratory-conveying drives with electromagnetic vibratory actuator 
(EVA) are very popular in the process industry of bulk materials. These 
drives provide a simple control of bulk material mass-flow. 

It is understood that the transporter mechanism powered by the 
motor force F. The motor force F is changing in dynamic behavior and in 
that manner, it changes the dynamic behavior of vibratory-conveyor 
mechanism, during the realization of task, and in that manner dictates 
dynamics motion of powder or granular material, which are being 
transported.  
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Fig. 1. Conveyor mechanism. 
 
In dependence of shape of motor force F, we have two different 

examples:  
1. First example: The motor force F changes continuously 

intensity, programmed, works for all of time of working of 
transporter mechanism.  

2. Second example: This case is composed of two phases which 
alternate precisely, programmatically, in different time 
intervals. Motor force is dealing in infinite short period of time 
and after that follows the response of the system in finite period 
of time. These two stages are repeated cyclically. 
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a) The first stage: The impact force deal at a very short time 
interval. It's just one moment when the conveyor is exposed to 
the motor force. The action of force F is repeated cyclically 
with determined intensity. It's must be emphasized that one of 
integral phenomenon of the dynamics of the conveyor motion 
is the impact of the collision. It's just one time moment when 
the conveyor is exposed to the motor force.  
b) The second stage: The free motion of the transporter, 
immediately after the action of motor force. This is time period 
when the motor force is not working. In this time period F=0. 
This is essentially the response of the conveyor system over a 
period of time from the moment of the termination of force F 
until the moment it's re-effect on the system. This is the system 
response period of the conveyor system on influence of impact 
force. 

 We will define a mathematical model of the system for both 
examples. 
 By applying Lagrange’s equation to expressions for potential and 

dissipative energy: as result of motion of elasticity composite spring, as 
result of motion of elasticity horizontal and vertical springs and kinetic 
energy of the mechanism presented in Fig. 1 with respect to the generalized 
coordinates: p/l2, u , w  and, the equations of motion are obtained in the 
matrix form. 
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This mechanism, described in equation (1), is influenced by the 
force F=[Fx Fy]T of a motor that continuously works on system. 

The second example is more interesting. This case is composed of 
two phases which alternate, programmatically, in different time intervals. 
In the first phase motor force is dealing in infinite short period time and 
then the equations of system are obtained:  
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After that follows the response of the system for finite period time, 
described in equation (3): 
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These two stages are repeated cyclically. 
 
3. Kinematics model of conveyor mechanism 

 
Relationship between internal coordinates p/l2, u, w, , and Cartesian, 
external, coordinates xk yk k was defined as so-called “direct kinematics” 

problem. In this case (see Fig. 1): 
)cos(lcoslux *

21k                                                                     (4) 

)sin(lsinlwy *
21k                                                                   (5) 

 2k lp                                                        (6) 

Where =(p/l2).  
The Jacobi matrix J will be formed as a connection between the 

velocity vector of the external coordinates kk y,x  , which defines the 
velocity of a point K of the conveyor carriers in the Cartesian coordinates, 
and the velocity vector of generalized coordinates  ,w,u,2/lp . 
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4. Simulations results 
 
Simulation experiments were performed with the following characteristics 
of the mechanism: the stiffness Cs=1.0 e+006 [kg/s2] and damping 
Bs=140[kg/s] characteristics of composite spring; the mass of the troughs 
carried by the conveyor is mk=20[kg]; while the moment of inertia Jk= 
0.02[kgm2]; the conveyor body weight is mb=1000[kg], the stiffness 
Cox=1.0 e+006[N/m] and damping Box=10000[N/(m/s)] characteristics of 
the horizontal spring; the stiffness Coy1=1.0e+007[N/m] and damping 
Boy1=10000[N/(m/s)] characteristics of the left vertical spring; the stiffness 
Coy2=1.0 e+007 [N/m] and damping Boy2=10000[N/(m/s)] characteristics 
of the right vertical spring. 

The first example is characterized by the impulse effect of the 
motor force only at the first time of the time selection F= 50000[N], see 
Fig. 2. And after that the motor force is F=0[N], i.e, it does not have the 
effect of the motor force and only the dynamics response of the mechanism 
of the transporter over the period of 5[s] is observed. 

  

 
Fig. 2. Motor force F, Example I. 
 

 
Fig. 3. Elastic deformation of composite spring p, Example I. 
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The response dynamics of all the generalized coordinates show the 
difference in the dynamics of the response of the system, the different 
attenuation characteristics, as well as also the evident presence of the 
influence of gravitational forces.  
 

 
Fig. 4. Elastic deformation of horizontal spring u, Example I. 

 
Fig. 5. Elastic deformation of left vertical spring w, Example I. 
 

It is clear from Figs. 3-6 that each of the generalized coordinates 
has the static error size of the elastic deformation due to the presence of 
gravitational forces. 

At the end of the implementation of the task, when the effect of the 
impulse force becomes zero, the effect of gravitational forces is seen. In 
the state of static equilibrium generalized coordinates take the following 
values: elastic deformation of composite spring tends to size p= -0. 
0007[m], see Fig. 3, elastic deformation of horizontal spring u= 
+0.00001[m], see Fig. 4, elastic deformation of left vertical spring w= -
0.00006[m], see Fig. 5, angle of rotation of the conveyor base = -0. 
0038[rad], see Fig. 6.  
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Fig. 6. Angle of rotation of the conveyor base , Example I. 
 

The second example is characterized by the impulse effect of the 
motor force F= 50000[N], which cyclically acts on the conveyor belt, see 
Fig. 7 and Fig. 8. 
 

         
Fig. 7. Motor force F, for full time             Fig. 8. Motor force F,  
period, Example II                                      for t=4.7-5[s], Example II. 
 

It's the frequency f= 27.78[Hz], while the selection period T= 
0.036[s].  

                
Fig. 9. Elastic deformation p, Example II.    Fig. 10. Elastic deformation p,  
                                                                       for t=4.7-5[s], Example II. 
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For selected characteristics of the system, the dynamics of the 

change of the elastic deformation of composite spring p (order magnitudes 
10-2[m]), for Example II, is presented in Fig. 9. 

The left Fig. 9 represents the observed size during the realization 
of the entire task for total time of Ttot=5[s], but right Fig. 10 represents the 
elastic deformation of composite spring p during short time period t=4.7-
5[s]. It is just a separate detail of the observed size, for the period when 
the transition mode is completed and we only have influence of a cyclic 
impact force. 

The statical error of the elastic deformation of the composite spring 
is pster≈-0.0007[m]. 

 

           
Fig. 11. Elastic deformation u, Example II.  Fig. 12. Elastic deformation u,  
                                                                         for t=4.7-5[s], Example II. 
 

The dynamics of the change of the second generalized coordinate, 
elastic deformation of the horizontal spring u (order magnitudes 10-4[m]), 
for Example II, is given in picture 11. The picture 12 represents only the 
selected details from the left image 11 in a short time interval t=4.7-5[s]. 
It is just a separate detail of the second generalized coordinate u, for the 
period when the transition mode is completed and we only have influence 
of cyclic impact force. The statical error of elastic deformation of the 
horizontal spring is uster≈-0.000128[m]. 
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Fig. 13. Elastic deformation w, Example II. Fig. 14. Elastic deformation w,  
                                                                         for t=4.7-5[s], Example II. 
 

The dynamics of the change of the third generalized coordinate, 
elastic deformation of left vertical spring w (order magnitudes 10-3[m]), 
for Example II, is given in Fig. 13. 

               
Fig. 15. Angle of rotation , Example II.    Fig. 16. Angle of rotation ,   
                                                                         for t=4.7-5[s], Example II.  
 

The picture 14 represents only the selected details from the left 
image 13 in a short time interval t=4.7-5[s]. It is just a separate detail of 
the third generalized coordinate w, for the period when the transition mode 
is completed and we have influence of cyclic impact force, only. The 
statical error elastic deformation of left vertical spring is wster≈-
0.00006[m]. 

The dynamics of the change of the fourth generalized coordinate, 
angle of rotation of the conveyor base (order magnitudes 10-3[rad]), for 
Example II, is given on picture Fig. 15.  

The picture 16 represent only the selected details from the left 
image 15, in a short time interval t=4.7-5[s]. It is just a separate detail of 
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the fourth generalized coordinate , for the period when the transition 
mode is completed and we have influence of cyclic impact force, only. 

All four generalized coordinates: p/l2, u, w,  and their velocities:
 ,w,u,2/lp  are used in kinematic relations (4)-(7) to be calculate external 

coordinates xk and yk, and their velocities, also. The xk and yk are coordinate 
of tip of composite spring in point K, in x-y plane. See Fig. 1. The motion 
and motion velocity of point K of composite spring, for II Example in a 
short time interval t=4.7-5[s], are presented in Figs. 17 and Fig 18, 
respectively. We can see that motion of point K oscillatory, cyclically and 
that is rhythmically repeating, for the period when the transition mode is 
completed (when we no longer have the effect of influence deviating of 
the initial conditions) and we have influence of cyclic impact force, only. 
  

            
Fig. 17. Motion of point K,                   Fig. 18. Motion velocity of point K,   
for t=4.7-5[s], Example II.                        for t=4.7-5[s], Example II.  

 
5. Conclusions 

 
In this paper, a dynamic model of the conveyor mechanism for grain (and 
scattered) materials is defined using the Lagrangian equation of the second 
order relative to the chosen generalized coordinates. The equations are 
obtained by using equations of equilibrium in the classical form that 
describe the motion of a vibratory conveyor which in addition to rigid 
elements, build the elastic elements, also.  

Three mathematical models of the system are defined when: 
1. the motor force works continual in the finite time interval, 

equation (1), 
2. when the motor force works at small time interval, equation (2), 
3. conveyor mechanism is working without motor force; this model 

shows the dynamics of the response of the system after the 
impact of the motor force, equation (3). 
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 Model 1 is used when we want to generate a certain form of motor 
force at a finite time interval. Dynamic model of that system is generated 
but it is not analyzed in detailed, in this paper. If we choose the motor force 
to be impulse and needs to be repeating rhythmically, the work of the 
conveyor mechanism defines the model 2 and the model 3 that are 
cyclically and in the same order repetitive. In model 2, the phenomenon of 
collision is defined, and this is the moment when the motor hits the trough 
with force F, at small time period. Influence of the current force F is 
special phenomenon, which has own legality. At the moment of collision, 
the motor force does not only work on the elastic deformation of composite 
spring, coordinate p direction, but it also transmits and acts on other 
generalized coordinates, also, via Jacobi’s matrix. At the moment after 

impact act of the motor force on the vibratory conveyor, then the dynamics 
of the behavior of the system is different and it is mathematically 
formulated by the model 3.  

This paper especially analyzed cyclically work of conveyor 
mechanism when periods of impact force and responses are cyclically 
alternated. 

The kinematic model of that system is generated in first time in 
literature so far by equations (4)-(7). This paper especially analyzed 
cyclically work of conveyor mechanism when are periods of: impact force 
and response of a conveyor mechanism are cyclically alternate. The 
novelty is the Jacobi matrix, through which the mapping the of motor force 
on a dynamic motion of system is given. It should be especially 
emphasized that we now have the ability to calculate and planning the 
motion of the top of the composite spring, i.e, the motion of the conveyor, 
which implies the possibility of planning the motion of the transport 
material. 

A comparative analysis of this model was made with the so far 
known models in this field.  

 Different structure of inertia matrix H, different coupling between 
the generalized coordinates, through the inertial matrix H, 

 presence of Coriolis forces h in dynamical model of conveyor, 
different coupling between the generalized coordinates, through 
the Coriolis forces h, 

 presence of Gravity forces G in dynamical model of conveyor,  
 different coupling between the generalized coordinates, through 

the matrix of rigidity C and matrix of damping B,  
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 the motor force F that transmitted over the Jacobian matrix J not 
only to the motion of the generalized coordinate p/l2 (as interpreted 
so far in literature), but also to the motion of the other three 
generalized coordinates u, w and ,  

 the kinematics model of such a mechanism is defined, which is a 
prerequisite for the correct definition of a dynamic model, 

 the Rayleigh's angle  are introduced as real characteristic of 
composite spring. 

 During the realization of this paper, the TRAMECH software 
package was created using MATLAB which is user-oriented for the 
synthesis and analysis of the conveyor mechanism. The results of the 
simulation results are also shown. 
 The possibility of change of trajectory motion of point K opens new  
research view in this area, where we have possibility to planning the 
trajectory and velocity of the transport material and thus its flow, changing 
of conveyor components characteristics. This result is new and original, in 
relation to the solutions known so far. 
 With fundamental approach to analysis of flexibility of the complex 
mechanism, opened a wide field of working on analyzing and modeling of 
a mechanism of conveyor and we attempted to give a contribution to the 
development of this area. 
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ABSTRACT 

 
Perpetual points defined in mathematics recently and among other 

research directions they are used, as herein, in mechanics. The perpetual 
manifolds and the augmented perpetual manifolds are defined that 
describe the dynamics of mechanical systems while they are moving in 
rigid body motions. Moreover the dynamics in perpetual manifolds has 
interest in terms of mechanics, with features such as zero sums of internal 
forces etc., which lead to the perpetual mechanics concept.  In this article 
the design of a mechanical system with typical solution of differential 
equations is done. Then the developments in perpetual mechanics are 
employed to perform the same design and some analysis of the 
mechanics of this system. The analysis of the mechanics of this system 
deploys hidden characteristics from the dynamic analysis, and this 
justifies the term perpetual mechanics. Finally the theoretical results are 
numerically verified, with excellent agreement. 

 
 

1. Introduction 
 
The perpetual points have been defined in mathematics recently (Prasad 
2015) [1]. They are defined as the sets of points that arise by setting 
accelerations and jerks of a mechanical system equal to zero, but for 
nonzero velocities. Their significance in examining dynamics of systems 
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is ongoing research that can be grouped in 4 research directions. The first 
research direction is about the perpetual points themselves with several 
definitions and experiments to identify them [1-4]. The second research 
direction is relevant to the use of the perpetual points to capture 
characteristics of nonlinear dynamics of systems such as hidden and 
chaotic attractors [5-14]. The third research direction is relevant to 
identification of dissipative systems through the perpetual point’s 
concept [15-19]. Finally the fourth research direction is to use the 
perpetual points in examining dynamics and mechanics of mechanical 
systems [20-27], that the content of this article belongs to. In linear 
mechanical systems, and some nonlinear, the perpetual points are 
associated with rigid body motions [20-21], which lead to the definition 
of the perpetual mechanical systems in [22]. The perpetual mechanical 
systems are defined as the systems that admit as perpetual points, the sets 
of points that are associated with rigid body motion, and they are forming 
the perpetual manifolds. In [22] the concept of perpetual manifolds to the 
augmented perpetual manifolds has been extended, and they are defined 
by the state spaces of mechanical systems that are moving in rigid body 
motion, and they can be obtained when their accelerations are equal but 
not necessarily zero. Moreover in [22] a theorem has been proved 
defining the conditions that the dynamics of mechanical system is 
described by the augmented perpetual manifolds. Following the theorem 
developed in [22], a corollary in [23] is stated and proved, that there is 
zero sum of the perpetual mechanical system’s internal forces when their 

motion is described by the exact augmented perpetual manifolds, and this 
is significant outcome for the mechanics of these systems. The functional 
forms of the exact augmented perpetual manifolds, defined by the 
theorem in [22], for a specific mechanical system they are infinite and 
this is proved in a corollary [24]. Moreover different mechanical systems 
can have exactly the same motions defined by the exact augmented 
perpetual manifolds, as proved in a corollary [25]. In another corollary is 
proved that the perpetual mechanical systems with nonlinear internal 
forces and these that are restricted to only linear internal forces for the 
same external forcing and the same initial conditions they have the same 
motion. Therefore there is no need for cumbersome nonlinear modelling 
of the internal forces of the perpetual mechanical system in order to 
describe the motion in the exact augmented perpetual manifolds. In [26] 
a theorem is stated and proved, examining the internal forces, and energy 
dissipation of the perpetual mechanical system when the motion is 
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described by the exact augmented perpetual manifolds. Under conditions, 
when the motion of the perpetual dissipative mechanical system is 
described by the exact augmented perpetual manifolds, all the individual 
internal forces are eliminated, there is no energy loss due to damping, the 
external work done is equal to the changes of the kinetic energy and the 
perpetual mechanical system can behave as perpetual machine of third 
kind.  
Therefore since in [20-27] the augmented perpetual manifolds are not 
only used for the dynamic analysis of the mechanical systems but also 
used to examine the mechanics behind the motion in the exact augmented 
perpetual manifolds these research outcomes are forming the initial step 
in developing the perpetual mechanic theory.  
    In this article an example of analytical design of a nonlinear 
mechanical system to admit similar rigid body motions is done. In 
section 2.1, without employing any relevant tool associated with a 
perpetual mechanical system, by seeking solutions which are 
corresponding to similar rigid body motions the design is done.  Then in 
section 2.2, using the perpetual mechanics concepts [20-26], the design is 
repeated and also further features in terms of mechanics that cannot be 
directly identified from the design of section 2.1 are examined. In section 
3 the analytical results with numerical simulations are examined. 

 
2. Theoretical analysis 

 
2.1 Dynamic analysis 
As an example a four degrees of freedom nonlinear system, with a configuration 
shown in Figure 1, is going to be designed for admitting similar rigid body 
modes. The equations of motion are given by, 

[𝑴] × {𝒙̈𝒊(𝑡)} + [𝑲] × {𝒙𝒊(𝑡)} + {𝑭𝑵𝑳,𝒋 (𝑥𝑝(𝑡))} = {0}, (1) 

with 𝑝 ∈ {1,… ,4},and i,j=1,...,4. The mass matrix is defined by, 

[𝑴] = [

𝑚1 0 0 0
0 𝑚2 0 0
0 0 𝑚3 0
0 0 0 𝑚4

],          (2a) 

and 𝑚𝑖 (𝑖 = 1, . . ,4)  are positive constants. 
The stiffness matrix is defined by,  
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[𝑲] =

[
 
 
 
𝑘1 + 𝑘𝑒𝑥𝑡,1 −𝑘1 0 0

−𝑘1 𝑘1 + 𝑘2 + 𝑘𝑒𝑥𝑡,2 −𝑘2 0

0 −𝑘2 𝑘2 + 𝑘3 + 𝑘𝑒𝑥𝑡,3 −𝑘3
0 0 −𝑘3 𝑘3 + 𝑘𝑒𝑥𝑡,4]

 
 
 

. (2b) 

The nonlinear forces vector associated with an elastic potential is given by, 

{𝑭𝑵𝑳,𝒋 (𝑥𝑝(𝑡))} =

{
 
 

 
 

𝑘𝑛𝑙,1 ∙ (𝑥1 − 𝑥2)
3

−𝑘𝑛𝑙,1 ∙ (𝑥1 − 𝑥2)
3 + 𝑘𝑛𝑙,2 ∙ (𝑥2 − 𝑥3)

3

−𝑘𝑛𝑙,2 ∙ (𝑥2 − 𝑥3)
3 + 𝑘𝑛𝑙,3 ∙ (𝑥3 − 𝑥4)

3

−𝑘𝑛𝑙,3 ∙ (𝑥3 − 𝑥4)
3

}
 
 

 
 

.   (2c) 

A possible rigid body motion solution is defined by, 
𝑥𝑖 = 𝑥𝑎 , for 𝑖 = 1,… ,4, 𝑥𝑎 ∈ ℝ,   (3a) 

and, 
𝑥̇𝑖 = 𝑥̇𝑎 , for 𝑖 = 1,… ,4, 𝑥̇𝑎 ∈ ℝ

∗,   (3b) 
which leads to, 

𝑥̈𝑖 = 𝑥̈𝑎 , for 𝑖 = 1,… ,4.    (3c) 

 
Figure 1. The configuration of the mechanical system, indicating with cyan 
lines the underlying perpetual mechanical system. 
 
The trial method for a rigid body motion solution of the mechanical system, 
with configuration shown in Figure 1, is examined by replacing equations (3) in 
equations (1), 

[𝑴] × {𝟏} ∙ 𝑥̈𝑎 + [𝑲] × {1} ∙ 𝑥𝑎 + {𝑭𝑵𝑳,𝒋(𝑥𝑎(𝑡))} = {𝟎},  (4) 
whereas using equation (2b), leads to,  

[𝑲] × {1} ∙ 𝑥𝑎 = 

 

kext,1 

x1 

 
k1 m1 

knl,1 

  
k2 m2 

knl,2 

k3 m3 

knl,3 

 m4 

x2 x3 x4 

kext,2 kext,3 kext,4 

Perpetual Mechanical Subsystem 
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=

[
 
 
 
𝑘1 + 𝑘𝑒𝑥𝑡,1 −𝑘1 0 0

−𝑘1 𝑘1 + 𝑘2 + 𝑘𝑒𝑥𝑡,2 −𝑘2 0

0 −𝑘2 𝑘2 + 𝑘3 + 𝑘𝑒𝑥𝑡,3 −𝑘3
0 0 −𝑘3 𝑘3 + 𝑘𝑒𝑥𝑡,4]

 
 
 

× {1} ∙ 𝑥𝑎

= 

=

{
 

 
𝑘𝑒𝑥𝑡,1
𝑘𝑒𝑥𝑡,2
𝑘𝑒𝑥𝑡,3
𝑘𝑒𝑥𝑡,4}

 

 

∙ 𝑥𝑎.    (5a) 

Also using equation (2c) in equation (4) lead to, 
{𝑭𝑵𝑳,𝒋(𝑥𝑎(𝑡))} = {𝟎}.     (5b) 

Replacing equations (5a-b) in equation (4) lead to the following decoupled 
differential equations, 

{

𝑚1

𝑚2

𝑚3

𝑚4

} ∙ 𝑥̈𝑎 +

{
 

 
𝑘𝑒𝑥𝑡,1
𝑘𝑒𝑥𝑡,2
𝑘𝑒𝑥𝑡,3
𝑘𝑒𝑥𝑡,4}

 

 

∙ 𝑥𝑎 = {𝟎},   (6a) 

which they are not necessarily having the same coefficients, and as it should be 
expected, in the general case they are inconsistent.  
The condition that all the equations would be the same is that the following 
ratios are true, 

𝑘𝑒𝑥𝑡,1

𝑚1
=

𝑘𝑒𝑥𝑡,2

𝑚2
= ⋯ =

𝑘𝑒𝑥𝑡,4

𝑚4
= 𝜔𝑛

2.   (6b) 

If the parameters defining the internal forces in equation (6a) are following 
equation (6b) then the solution is rigid body motion, and it is given by any of 
the equivalent differential equations of equations (6a), which can be written as, 

𝑥̈𝑎 +𝜔𝑛
2 ∙ 𝑥𝑎 = 0.    (6c) 

The solution of equation (6c) can be found in any vibration textbook and in 
explicit form is given by [28-29], 

𝑥𝑎(𝑡) = 𝐴 ∙ 𝑠𝑖𝑛(𝜔𝑛 ∙ 𝑡 + 𝜑),    (7a) 

with, 

𝐴 = √𝑞𝑎
2(𝑡0) + (

𝑞̇𝑎(𝑡0)

𝜔𝑛
)
2
,     (7b) 

𝜑 = 𝑡𝑎𝑛−1 (
𝑞𝑎(𝑡0)∙𝜔𝑛

𝑞̇𝑎(𝑡0)
).     (7c) 

The velocity is given by, 

𝑥̇𝑎(𝑡) = 𝜔𝑛 ∙ 𝐴 ∙ 𝑐𝑜𝑠(𝜔𝑛 ∙ 𝑡 + 𝜑),    (7d) 
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and the acceleration is, 

𝑥̈𝑎(𝑡) = 𝜔𝑛
2 ∙ 𝐴 ∙ 𝑠𝑖𝑛(𝜔𝑛 ∙ 𝑡 + 𝜑).    (7e) 

In case that equation (6b) is equal to zero, then equation (6c) that defines the 
motion is taking the form, 

𝑥̈𝑎 = 0,     (8a) 
and choosing initial conditions associated with rigid body motion then with 
direct integration leads to, 

𝑥̇𝑎(𝑡) = 𝑥̇𝑎(𝑡0) = 𝑐𝑡,     (8b) 
and, 

𝑥𝑎(𝑡) = 𝑥̇𝑎(𝑡0) ∙ 𝑡 + 𝑥𝑎(𝑡0),    (8c) 
whereas for zero initial velocity there is no motion on the system. 
Therefore splitting the stiffness matrix [𝑲] defined by equation (2b) as follows, 

[𝑲] = [𝑲𝒊𝒏𝒕] + [𝑲𝒆𝒙𝒕],     (9a) 
with, 

[𝑲𝒊𝒏𝒕] = [

𝑘1 −𝑘1 0 0
−𝑘1 𝑘1 + 𝑘2 −𝑘2 0
0 −𝑘2 𝑘2 + 𝑘3 −𝑘3
0 0 −𝑘3 𝑘3

],   (9b) 

and, 

[𝑲𝒆𝒙𝒕] =

[
 
 
 
𝑘𝑒𝑥𝑡,1 0 0 0

0 𝑘𝑒𝑥𝑡,2 0 0

0 0 𝑘𝑒𝑥𝑡,3 0

0 0 0 𝑘𝑒𝑥𝑡,4]
 
 
 

,   (9c) 

 
then, following the derivation of equation (8a) from equation (6c), leads to zero 
𝐾𝑒𝑥𝑡, and the solution of rigid body motion given by equations (8b-c) can be 
obtained. The equations of motion of this subsystem are given by, 

[𝑴] × {𝒙̈𝒊(𝑡)} + {𝑭𝑳,𝒋} + {𝑭𝑵𝑳,𝒋 (𝑥𝑝(𝑡))} = {0}, with 𝑝 ∈ {1,… ,4}, i,j=1,...,4. 

(10a) 
whereas 

{𝑭𝑳,𝒋} = [𝑲𝒊𝒏𝒕] × {𝒙𝒊(𝑡)}.   (10b) 
The aforementioned dynamic analysis leads to a sufficient design of the 
mechanical system in such a way to admit similar rigid body modes, but in 
more complicated systems e.g. N-dof the aforementioned dynamic analysis 
could become very cumbersome. Moreover there are hidden properties of the 
mechanical subsystem that is described by equations of motion (10) while the 
motion is defined by equations (6c), that will be discussed in the next section. 
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2.2 The design of the mechanical system and the view of perpetual 
mechanics 
 
Definition of perpetual mechanical system   
The perpetual mechanical subsystem arise from equations (1) when the stiffness 
matrix is comprised of only the first term of equation (9a), and in Figure 1 is 
shown by considering the internal elements of the cyan boundaries. As shown, 
this subsystem’s motion is described by equation (10a), and admits the rigid 
body motion solutions defined by the equations (8b-c). These rigid body motion 
solutions escape to infinity and they are resulting indefinite motion of this 
subsystem. This observation justifies the terminology of perpetual mechanical 
system to characterize it [22]. In case of linear systems, the eigenvalue problem 
leads to zero first natural frequency, which is associated with the rigid body 
mode, but this is not the case for nonlinear systems since the eigenvalue 
problem cannot serve as a tool to identify rigid body modes.  Therefore this 
definition leads to a uniform definition of such mechanical systems. 
A mechanical system that admits perpetual points associated with rigid body 
motion solution given by equations (3a-c), means that all accelerations are equal 
to zero. Therefore, setting accelerations equal to zero this number of equations 
(N) is insufficient to define N-velocities, and N-displacements.  
In case of writing the system as first order and setting the vector field equal to 
zero the equilibrium points are arising, whereas the accelerations and velocities 
are equal to zero, which means no motion. Therefore this system of equations is 
insufficient to characterize the perpetual mechanical systems. In order to obtain 
an extra set of equations, considering that the accelerations are equal to zero 
leads that also the jerks are equal to zero, and these equations can be used to 
define the rest N variables, which are associated with the nonzero velocities. In 
perpetual mechanical systems, the perpetual points associated with rigid body 
motions are infinite points, they form manifolds therefore they can form also 
solutions of the systems of differential equations.  
It is still remains to show that the perpetual manifolds of rigid body motions of 
the perpetual mechanical system of Figure 1 are leading to zero jerks. 
The equations of jerks of the perpetual mechanical system, can be obtained after 
differentiation of the equations (10), with respect to time, and they are given by, 

[𝑴] × {𝒙⃛𝒊(𝑡)} + [𝑲𝒊𝒏𝒕] × {𝒙̇𝒊(𝑡)} + {𝑭̇𝑵𝑳,𝒋 (𝑥𝑝(𝑡))} = {0},  (11a) 

with 𝑝 ∈ {1,… ,4}, i,j=1,...,4, whereas, 

{𝑭̇𝑵𝑳,𝒋 (𝑥𝑝(𝑡))} = 
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=

{
 
 

 
 

3 ∙ 𝑘𝑛𝑙,1 ∙ (𝑥1 − 𝑥2)
2 ∙ (𝑥̇1 − 𝑥̇2)

−3 ∙ 𝑘,𝑛𝑙,1 ∙ (𝑥1 − 𝑥2)
2 ∙ (𝑥̇1 − 𝑥̇2) + 3 ∙ 𝑘,𝑛𝑙,2 ∙ (𝑥2 − 𝑥3)

2 ∙ (𝑥̇2 − 𝑥̇3)

−3 ∙ 𝑘𝑛𝑙,2 ∙ (𝑥2 − 𝑥3)
2 ∙ (𝑥̇2 − 𝑥̇3) + 3 ∙ 𝑘𝑛𝑙,3 ∙ (𝑥3 − 𝑥4)

2 ∙ (𝑥̇3 − 𝑥̇4)

−3 ∙ 𝑘𝑛𝑙,3 ∙ (𝑥3 − 𝑥4)
2 ∙ (𝑥̇3 − 𝑥̇4) + 3 ∙ 𝑘𝑛𝑙,4 ∙ (𝑥4 − 𝑥5)

2 ∙ (𝑥̇4 − 𝑥̇5)}
 
 

 
 

. 

(11b) 
 

Considering rigid body motion solution defined by equations (3a-c), with 
substitution of them in equation of jerks (11a), leads to, 

[𝑲𝒊𝒏𝒕] × {𝒙̇𝒂} = [

𝑘1 −𝑘1 0 0
−𝑘1 𝑘1 + 𝑘2 −𝑘2 0
0 −𝑘2 𝑘2 + 𝑘3 −𝑘3
0 0 −𝑘3 𝑘3

] × {1} ∙ 𝑥̇𝑎 = {𝟎}, (12) 

whereas equation (8b) is considered. 
The vector term associated with the nonlinear forces in equation (11a), that it is 
given by the equation (11b) is straightforward to show that in case of rigid body 
motion (eq. 3a-c) is corresponding to zero vector. 
Therefore the perpetual mechanical subsystem for rigid body motion, for 
nonzero velocities, is associated with accelerations and jerks equal to zero. 
 
Augmented perpetual manifolds definition   
In equation (6a) the accelerations are equal but not necessarily zero [22], and 
this leads to the necessity of defining the augmented perpetual manifolds, 
whereas they arise as solutions obtained from equation (6a). Upon the initial 
conditions the augmented perpetual manifolds might correspond to exact rigid 
body motions solutions whereas all the displacements are equal and the 
accelerations are equal.   
In [22] the following theorem is proved defining the conditions that the solution 
is in the exact augmented perpetual manifolds: 
“Any 𝑁(≥ 2)-degrees of freedom discrete mechanical system with generalized 
coordinates 𝑞𝑖(𝑡) that can be written as a perpetual mechanical system with 
external forcing that is described by the following system of differential 
equations, 

[𝑴𝒊,𝒋(𝑡, 𝑞𝑙(𝑡), 𝑞̇𝑚(𝑡))] × {𝒒̈𝒊(𝑡)} + [𝑪𝒊,𝒋] × {𝒒̇𝒊(𝑡)} + [𝑲𝒊,𝒋] × {𝒒𝒊(𝑡)} + 

+{𝑭𝒋
𝑵𝑳(𝑞𝑛(𝑡), 𝑞̇𝑜(𝑡))} = {𝑭𝒋 (𝑡, 𝑞𝑝(𝑡), 𝑞̇𝑞(𝑡))}, for 

𝑖 = 1,… ,𝑁, 𝑗 = 1,… , 𝑁, 𝑙,𝑚, 𝑛, 𝑜, 𝑝, 𝑞 ∈ {1,2, … ,𝑁}, 
(𝑞𝑖(𝑡), 𝑞̇𝑖(𝑡), 𝑞̈𝑖(𝑡)) ∈ ℝ

3,    (13) 
and admits unique solutions for the following matrices, 
[𝑴𝒊,𝒋] is a real 𝑁 × 𝑁 inertia matrix with elements that can be, nonsmooth, 
nonlinear, time and state dependent, functions but having at least one nonzero 
sum of k-row for all time instants,  



 
 
 
 

 
 DESIGN OF A MECHANICAL SYSTEM 71 

 

 
 

[𝑲𝒊,𝒋]  and [𝑪𝒊,𝒋], are real 𝑁 × 𝑁 constant, stiffness and proportional to velocity 
vector, matrices,  
{𝑭𝒋

𝑵𝑳} is a 𝑁 × 1 vector of nonlinear internal forces with elements state 
dependent nonlinear functions which can be nonsmooth but single-valued for 
rigid body motions, and 𝐹𝑗

𝑁𝐿(𝑞𝑠, 0) = 0 for 𝑞𝑠 ∈ ℝ,  

{𝑭𝒋} is a real 𝑁 × 1  vector of external forces with elements, time and state 
dependent, maybe nonlinear and nonsmooth functions,  
if the external forces (𝐹𝑗) with the reference k-inertia external force (𝐹𝑘) are 
related as follows, 

𝐹𝑗(𝑡, 𝑞𝑎(𝑡), 𝑞̇𝑎(𝑡)) =
∑ 𝑀𝑗,𝑖(𝑡,𝑞𝑎(𝑡),𝑞̇𝑎(𝑡))
𝑁
𝑗=1 ∙𝐹𝑘(𝑡,𝑞𝑎(𝑡),𝑞̇𝑎(𝑡))

∑ 𝑀𝑘,𝑖(𝑡,𝑞𝑎(𝑡),𝑞̇𝑎(𝑡))
𝑁
𝑖=1

, for 

 𝑗, 𝑘 ∈ {1,2,… ,𝑁}, and 𝑞𝑎(𝑡) = 𝑞𝑖(𝑡), 𝑞̇𝑎(𝑡) = 𝑞̇𝑖(𝑡),   (14) 
then, the solution of any of the following differential equations, 

𝑞̈𝑎(𝑡) =
𝐹𝑘(𝑡,𝑞𝑎(𝑡),𝑞̇𝑎(𝑡))

∑ 𝑀𝑘,𝑖(𝑡,𝑞𝑎(𝑡),𝑞̇𝑎(𝑡))
𝑁
𝑖=1

= 𝐺(𝑡, 𝑞𝑎(𝑡), 𝑞̇𝑎(𝑡)) ,   (15) 

with vector field G, for the following set of initial conditions at the time instant 
𝑡0,  

𝑞𝑖(𝑡0) = 𝑞𝑎(𝑡0), for  𝑖 = 1,… ,𝑁, and,  𝑞𝑎(𝑡0) ∈ ℝ, (16a) 
𝑞̇𝑖(𝑡0) =  𝑞̇𝑎(𝑡0), for 𝑖 = 1,… ,𝑁, and, 𝑞̇𝑎(𝑡0) ∈ ℝ, (16b) 

is defining the generalized coordinates-𝑞𝑖 and their velocities in the exact 
augmented perpetual manifold, 

𝑋 = {(𝑡, 𝑞𝑎(𝑡),… , 𝑞𝑎(𝑡), 𝑞̇𝑎(𝑡), … , 𝑞̇𝑎(𝑡)), (𝑡, 𝑞𝑎(𝑡), 𝑞̇𝑎(𝑡)) ∈ ℝ
3}.       (17)” 

Mainly the equations of motion are written in such a way that the internal forces 
terms in the left side of equation (13), when the right-hand side is a zero vector, 
correspond to elements of the perpetual mechanical subsystem. In previous 
section is shown that these equations of motion that corresponds to a perpetual 
mechanical subsystem are the equations (10). 
The system of equations that describes the motion, in our example, written in 
the form of equation (13), are given by, 

[𝑀] × {𝑥̈𝑖(𝑡)} + [𝐾𝑖𝑛𝑡] × {𝑥𝑖(𝑡)} + {𝐹𝑁𝐿,𝑗 (𝑥𝑝(𝑡))} = [𝐾𝑒𝑥𝑡] × {𝑥𝑖(𝑡)}, 

with 𝑝 ∈ {1,… ,4}, and i,j=1,...,4. (18a) 
and neglecting the nonlinear forces the underlying perpetual mechanical system 
arise as follows, 

[𝑀] × {𝑥̈𝑙,𝑖(𝑡)} + [𝐾𝑖𝑛𝑡] × {𝑥𝑙,𝑖(𝑡)} = [𝐾𝑒𝑥𝑡] × {𝑥𝑙,𝑖(𝑡)}.  (18b) 
Then, based on the theorem, to obtain a solution in the exact augmented 
perpetual manifolds/rigid body motion the right hand side elements in equation 
(17) should follow equation (14), than in this case is taking the form, 

𝑘𝑒𝑥𝑡,𝑖 =
𝑚𝑖∙𝑘𝑒𝑥𝑡,𝑘

𝑚𝑘
,    (19) 
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whereas upon the selection of k −reference inertia element lead to maximum 
four different designs. Equation (19) is actually a re-arrangement of the 
equation (6b) that similarly defines the conditions for rigid body motion 
solution of equation (1).  
In our design, the similar rigid body normal mode with motion defined by the 
equation (6c) and solution given by equation (7a) is corresponding to particle-
standing wave solution of the system. 
As a summary so far, practically instead of repeating the approach of the 
previous section, using the limits (cyan boundaries) shown in Figure 1, the 
perpetual mechanical system can be defined and the forces associated with the 
rest elements can be separated in the right-hand side of equations of motion. 
Then applying straightforward the conditions defined by the theorem, the design 
can be easily done.   
It should be highlighted that in the right-hand side of equation (13) the forces 
can be state and time depended, described by not necessarily linear and smooth 
functions, and as in our nonlinear example the design doesn’t necessarily lead to 

nonlinear modes solutions. 
As the theory developed so far, the analysis can be named dynamics of 
mechanical systems using the perpetual points concept or even, due to the 
definition of the perpetual mechanical systems, can be called dynamics of 
perpetual mechanical systems. 
In [23] a corollary is stated and proved that the sum of internal forces, for an 
exact augmented perpetual manifolds solution, is zero, which is rather 
significant in the mechanics of these systems. 
This can be easily verified in our example. For rigid body motions the sum of 
the internal forces, of the perpetual mechanical system, considering equation 
(10) with equations (5a-b) is equal to: 

[𝑲𝒊𝒏𝒕] × {𝒙𝒊(𝑡)} + {𝑭𝑵𝑳,𝒋 (𝑥𝑝(𝑡))} = [𝑲𝒊𝒏𝒕] × {1} ∙ 𝑥𝑎 + {𝑭𝑵𝑳,𝒋(𝑥𝑎(𝑡))} =

{𝟎}, (20) 
therefore the sum of internal forces is zero. 
Moreover in [26] a proved corollary practically states that neglecting the 
elements associated with the nonlinear internal forces of the perpetual 
mechanical system, and considering only the linear internal forces the solution 
and the design will be the same. This can be easily certified in our example, by 
considering the underlying linear mechanical system arising by neglecting the 
nonlinear forces vector in equations (1), 

[𝑴] × {𝒙̈𝒊(𝑡)} + [𝑲] × {𝒙𝒊(𝑡)} = {0},   (21) 
and following the same approach with the previous section, it can be easily 
verified that the rigid body motion is described by equation (6a) with the 
constraints defined by the equation (6b). 
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Therefore, there is no need for cumbersome modelling of the nonlinearities of 
the mechanical system in order to examine exact augmented perpetual 
manifolds solutions. 
The last two mentioned corollaries, are justifying the significance of the exact 
augmented perpetual manifolds for the mechanics of the perpetual mechanical 
systems and this leads to the concept of the perpetual mechanics. 
The perpetual mechanics is not restricted to deriving the dynamics solutions of 
the mechanical systems but also the internal forces and the energy exchange 
with the environment are examined. Moreover the conclusions of this section 
cannot be obtained from the previous section dynamic analysis, and although 
they are restricted only to the theorem [22] and the two corollaries [23-26], they 
are sufficient to justify the significance of perpetual mechanics. 
 
3. Numerical results 

In this section, the theoretical design analysis of the previous section, with 
numerical simulations is confirmed.  
Initially the definition of the design parameters using equation (6b) is done. The 
parameters that define the original system in Table 1 are shown. The design is 
based by selecting stiffness kext,1 = 1800000 N/m, and through equation (6b) 
leads to the definitions, of the rest stiffness’s, and of the natural frequency of 
this similar rigid body mode which is 𝜔𝑛 = 34.641 𝑟𝑎𝑑/𝑠 (with associated 
period of 𝑇𝑛 = 0.18138 𝑠). 
 

i 𝑚𝑖 
(Kg) 

𝑘𝑖 
(N/m) 

𝑘𝑛𝑙,𝑖 
(N/m4) 

1 1500 1200000 200000 
2 2000 1400000 −130000 
3 3000 1300000 150000 
4 1200 − − 

Table 1. The parameters used for the numerical solutions. 
 

Considering initial conditions obtained from rearrangement of equations (7b-c), 
using shooting method the periodicity of the nonlinear perpetual mechanical 
system (eq. 18a), and of the underlying linear perpetual mechanical system (eq. 
18b), for the time interval associated with 𝑇𝑛 and for various displacement 
amplitudes (𝐴),  through the L2 − norm, is checked. 
In Figure 2, the L2 − norm values of the numerical solutions of the nonlinear 
and linear perpetual mechanical systems, for various amplitudes within the 
range [0.01,30] m, associated with the natural frequency 34.641 rad/s are 
depicted. The minimum values of  the  L2 − norm is with order of magnitude of 
−9, and this ensures the periodicity. Therefore the constant value of frequency 
ωn form the backbone line of this mode for both systems. 
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Figure 2. The values of the L2 − norm, obtained from shooting 

method. 
 

In Figure 3a, the numerically determined transient responses of the original 
system (eq. 18a), incorporating the analytical solution are depicted, for a normal 
mode with initial conditions 𝑥𝑎(0) = 30 𝑚  and 𝑥̇𝑎(0) = 0 𝑚/𝑠,  and they 
seem that they are in good agreement. The perfect agreement between the 
analytical solution obtained using equation (7a) with the numerical determined 
responses from equations (18a) can be ensured by considering the maximum 
difference between the analytical solutions with all the numerically determined 
displacements. The maximum of all the maxima, for all the considered points 
associated with the nonlinear perpetual mechanical system of Figure 2, is 
having the minimum value of 9.66 ∙ 10−10𝑚, (since the theoretical value is 
zero, this value is indicative of zero as an error associated with the numerical 
simulation e.g. different numerical integration tolerances would lead to another 
error value) which ensures that the numerical simulations are in perfect 
agreement with the analytical solutions. 
In Figure 3b, the numerically determined responses associated with the linear 
perpetual mechanical system (eq. 18b), for the same initial conditions, 
incorporating the analytical solution (eq. 7a) are depicted. Similarly with the 
nonlinear perpetual system they look that they are in good agreement, and this is 
certified by examining the maximum of the maxima, for all the transient 
responses of the considered points associated with the linear perpetual 
mechanical system of Figure 2, which has the minimum value of 9.66 ∙
10−10𝑚. 
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Figure 3. The numerically determined displacements, with initial 

conditions 𝑥𝑎(0) = 30 𝑚 and 𝑥̇𝑎(0) = 0 𝑚/𝑠, (a) associated with a 
nonlinear normal mode of the original system, incorporating the 
analytical solution, (b) associated with a linear normal mode of the 
underlying linear perpetual mechanical system, incorporating the same 
analytical solution.  

 

In Table 2, the maximum of the maximum absolute values of the 
sum of internal forces applied to each mass, obtained for all the 
numerical simulations (linear and nonlinear system) of points depicted in 
Figure 2, are shown. For comparison purposes, the maximum value of 
the theoretically effective forces that are defined by the product of each 
mass with its acceleration, associated with each point of Figure 2, can be 
obtained using equation (7e) and in the third column of Table 2 are 
shown. Since the minimum values of the effective forces are in the order 
of magnitude 4, and the maximum values of the sum of the internal 
forces are of −8 order of magnitude, then it can be concluded that the 
numerically determined sum of the internal forces is practically equal to 
zero. Noticeable though the equal values between the nonlinear system 
(2nd column) and the underlying linear system (3rd column). Starting 
from the linear internal forces, they are defined (eq. 11a) by a constant 
multiplying the relative difference between displacements that 
theoretically is equal to zero, and the nonzero values are attributed to a 
numerical error e<<1. The internal forces of the nonlinear system are 
comprised by the sum of the linear internal forces (eq. 11a) that arise by 
the error e in similar manner and the nonlinear internal forces (eq. 11b) 

(a) (b) 
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that are equal to a constant multiplying the error value e<<1 in the power 
of 3. Therefore, the nonlinear forces are much lower than the linear ones 
and contribute in much lower order of magnitude (at decimal points). 

 
i 

𝑚𝑎𝑥 (𝑚𝑎𝑥 |
{𝑭𝑳,𝒊} +

{𝑭𝑵𝑳,𝒊 (𝑥𝑝(𝑡))}
|) 

(N) 

𝑚𝑎𝑥(𝑚𝑎𝑥|{𝑭𝑳,𝒊}|) 
(N) 

Range of  
𝑚𝑖 ∙ 𝑚𝑎𝑥|𝑥̈𝑎| 

(N) 

1 2.98 ∙ 10−8 2.98 ∙ 10−8 [1.8 ∙ 104, 5.4 ∙ 107] 
2 5.47 ∙ 10−8 5.47 ∙ 10−8 [2.4 ∙ 104, 7.2 ∙ 107] 
3 4.80 ∙ 10−8 4.80 ∙ 10−8 [3.6 ∙ 104, 1.08 ∙ 108] 
4 2.31 ∙ 10−8 2.31 ∙ 10−8 [1.44 ∙ 104, 4.32 ∙ 107] 

Table 2. The maximum of the maximum of the sum of the 
internal forces applied to each mass, and of the effective forces, for all 
the points depicted in Figure 2, for the nonlinear and the linear perpetual 
mechanical systems. The theoretical values of 2nd and 3rd columns are 
zero, therefore these almost zero values are indicative of the numerical 
error. 

 
 

4. Conclusions 
 

In this article the analytical design of a mechanical system to admit rigid 
body modes, using theoretical dynamic analysis is done. Then the same 
design of the mechanical system, using the perpetual mechanics 
analytical tools has been repeated leading to the same design in an easier 
way. Moreover, the additional knowledge for the mechanics of this 
system through perpetual mechanics, that it is hidden in the first design, 
is discussed. More precisely is shown that the nonlinear perpetual 
mechanical system with the linear perpetual mechanical system have the 
same design and leads to the same normal mode. Moreover the sum of 
the internal forces for all time instants for both systems in the rigid body 
mode design is equal to zero. Finally the analytical results are confirmed 
with numerical simulations, whereas the discrepancies are minimal, and 
can be attributed in numerical errors.  
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ABSTRACT 
 

We investigate squeezing of two-component quantum optical solitons 
slowly moving in a tripod-type atomic system with double electromagnetically 
induced transparency (EIT). The evolution of the double probe-field envelopes is 
governed by a vector quantum nonlinear Schrödinger equation, which are derived 
from coupled Heisenberg-Langevin and Maxwell equations. Quantum 
fluctuations of vector soliton pairs and atomic spin are obtained by means of a 
direct perturbation approach. We find that the quantum squeezing of the vector 
soliton pairs is generated by the giant Kerr nonlinearity, which is provided by 
EIT, and the outcome of the squeezing can be optimized by the selection of 
propagation distance and angle. The atomic spin squeezing is found for short 
propagation distances.
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1. Introduction 
Vector optical solitons (VOSs) can form when stable balance between the 
dispersion/diffraction and nonlinearity represented by the self- and cross-
modulation in all components is maintained [1]. Due to their fundamental 
physical significance and potential applications to all-optical technology, 
optical information processing and transmission, vector solitons have 
drawn much interest [2,3]. In optical fibers, the solitons travel with speed 
close to c (the light speed in free space), hence systems with large 
propagation lengths are required [4], which is an obstacle for the design of 
optical information-processing devices of small sizes. 

In recent years, highly resonant media featuring electromagnetically 
induced transparency (EIT) have become the preferred option for the 
creation of robust solitons [5]. EIT systems feature many remarkable 
properties, including the suppression of optical absorption [6], large 
reduction of group velocity [7], giant enhancement of the Kerr nonlinearity 
for very low powers of the light field [8], and offer possibilities for the 
storage and retrieval of optical signals [9,10]. In particular, the storage and 
retrieval features strongly depend on the realization of ultraslow optical 
solitons, that can move with velocities c  [11,12].  

More recently, a four-level tripod EIT configuration with two weak 
probe fields and one control field have been proposed for the generation 
of spatial vector solitons in a cold tripod-type atomic system [13,14]. The 
spatial vector solitons exist in this four-level tripod EIT, featuring the 
squeezing and entanglement properties.  

Most studies on slow-light solitons in EIT-based media are based on 
semi-classical methods, while true quantum effects for them were 
investigated episodically [15,16]. Because slow-light solitons are 
produced with low powers, and they propagate at very low speeds, the 
quantum interference effect between atoms and the electromagnetic pulse 
may be more significant than assumed when the semi-classical method is 
used. Furthermore, the probe pulses in the quantum EIT system are 
described by quantized operators which are different from the semi-
classical field. Thus the derivation of the corresponding quantum nonlinear 
Schrödinger equation (QNLSE) and exploration of quantum effects, by 
means of this equation, are necessary. The objective of this work is to 
develop the vector (two-component) QNLSE and obtain effects predicted 
by it. 
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2. Model 

A lifetime-broadened cold atomic gas system with a tripod type four-level 
configuration, interacting resonantly with two laser fields, is sketched in 
Fig. 1(a). Two linearly polarized pulsed probe laser fields plE  (with central 

angular frequency pl , half Rabi frequencies pl , wave numbers plk , and 
1,2l   referring to the two probe fields) drive transitions 1 4 and 

2 4 , respectively. A strong continuous-wave control laser field cE  (

c ) drives the transition 3 4 .  
Under electric-dipole, rotating-wave and paraxial approximations, the 

system’s Hamiltonian reads 

/2
† † †

4 34/2
1,2 2,3,4 1,2

ˆ ˆ ˆˆ ˆ ˆ ˆ + H.c.
L

pl pl pl l pl cL
l l

c N
H dz i E E S S E S

L z L  





  

   
          

    
   .   (1) 

Here N  is the total atomic number of the system, ˆ
plE  are the quantized 

probe fields with commutators †ˆ ˆ[ ( , ), ( , )] ( )pl plE z t E z t L z z ， , L  is the 
length of the system along the z  axis, and c  is the speed of light in 

vacuum. Further,  
   ˆ ˆ,

i k k z t
S z t e       

 
     
   are atomic transition 

operators from the states   to  , 2 21   , 3 31p c      , 

4 41p    .  

 

Fig. 1. (a) The double-EIT excitation scheme of the four-level atomic system. Two 

weak, pulsed probe laser fields ˆ plE drive transitions 1 4 ( 2 4 ), and a strong, 

continuous-wave control laser field ˆ
cE  drives 3 4 . 2 , 3 , and 4  are 

detunings.   is the spontaneous emission decay rates for spontaneous transitions 

from   to  . (b) The geometry of the system. 

The dynamics of the system is governed by the Heisenberg-Langevin and 
the Maxwell equations, viz., 
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ˆ
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S i S L S F
t    

 
    
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,                   (2a) 

*
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1 ˆˆ+ 0pl
pl l

N
i E S

z c t c

  
  

  
,                      (2b) 

where  ˆL̂ S is a 4 4  relaxation matrix including the atomic decay rates 

of the spontaneous emission and dephasing, F̂  are  -correlated 
Langevin noise operators introduced to preserve the Heisenberg 
commutation relations for the operators of the atom wave functions and 
probe fields [15].  

Equation (2a) can be expanded as the follows:  

  * *
31 11 13 33 14 44 1 41 1 41 11

ˆ ˆ ˆ ˆ ˆ ˆ 0p pi S i S S S S iF
t
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     

 
 ,        (3f) 

  *
42 42 2 22 44 1 21 32 42

ˆ ˆ ˆ ˆ ˆ 0p p ci d S S S S S iF
t

 
       

 
 .         (3g) 

* *
3 33 31 11 32 22 34 44 43 43 33

ˆ ˆ ˆ ˆ ˆ ˆ ˆ 0c ci S i S i S i S S S iF
t

 
            

 
 ,      (3h) 

  * *
43 43 33 44 1 31 2 32 43

ˆ ˆ ˆ ˆ ˆ 0c p pi d S S S S S iF
t

 
       

 
 ,         (3i) 

* * * * * *
4 44 1 41 1 41 2 42 2 42 43 43 44

ˆ ˆ ˆ ˆ ˆ ˆ ˆ 0p p p p c ci S S S S S S S iF
t

 
          

 
 .    (3j) 

These expressions can be solved by means of the Fourier transform. 
After eliminating the atomic variables, we obtain: 

     ˆ ˆ, ,l pl pli K E z iF z
z

  
 
   

 .           (4) 
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Here   is the sideband frequency of the probe pulse, ( 1,2)lK l   are the 

linear dispersion relations for the two probe pulses, and ˆ
plF  are  -

correlated Langevin noise operators of the atoms and probe fields, 
obtained in the following form: 

 
 

2

1(2) 31(32)
1(2)

1(2)

p N d
K

c c D






 
   ,                (5a) 

 
     

 

*
31(32) 41(42) 31(32)1(2)

1(2)
1(2)

, ,
ˆ ,

cp
p

d F z t F z tN
F z t

c D





 
  .            (5b) 

where 31(32)d and 1(2)D are parameters in Eq. (3). Substituting Eq. (5) into Eq. 
(4) and converting it back into the time domain by means of the inverse 
Fourier transform, we arrive at the quantum linear Schrödinger equation: 

2
2

0 2

1 ˆ ˆ ˆ ˆ 0
2

l
pl l pl pl pl

gl

K
i E K E E iF

z V t t

   
         

 ,           (6) 

where ˆ
plF  is the  -correlated Langevin noise operators. One can expand 

 lK   in the Taylor series around 0   with  
2

2
0 2

l
l l

gl

K
K K

V


    , glV  

being the group velocity of the probe laser field, 1

0

1 l
l

gl

K
K

V





 
   

 
, and 

2

2 2

0

l
l

K
K






 
  

 
 is the coefficient of the group-velocity dispersion. 

To obtain equations for the two probe fields 1pE  and 2pE , we employ an 
iteration method. The solution of Eq. (2b) can be constructed order by 
order. In the first-order approximation, we get  

   1
1(2) 1(2) 1(2) 1(2)

ˆ ˆ 3,4p pS a E     ,                    (7) 

where 
 

*
1 3 31 4
1 2

31 41

c

c

d
a

d d
 



  


 
 and 

 
*

1 3 32 4
2 2

32 42

c

c

d
a

d d
 



  


 
. 

At the second order, the result is  

 
 

     2 †

1 2 1 2 1 2
ˆ ˆ , 1,2,3,4p pS a E E 

  
， ,               (8) 

where      
*

2 1 * 1 *34
11,1 41 31

14 43

2 1
2Im 2Imc c

c c

D
a a a

D D d

   
       

, 

     
*

2 1 * 1 *34
11,2 41 31

24 43

2 1
2Im 2Imc c

c

D
a a a

D D d

   
       

,      
* *

2 1 * 1 *34
22,1 31 41

14 43

1
2Im 2Im

43
c c c

c c

D
a a a

D d D d

     
    

   
, 

     
* *

2 1 * 1 *34
22,2 31 41

2 43 24 2 43

1
2Im 2Imc c c

c c

D
a a a

D d D d

      
    

   
, 

   2 1 *
33,1 31

14

1
2Ima a  

 
, 
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   2 1 *
33,2 32

24

1
2Ima a  

 
, 

        2 1 * 2 2
43,1 31 33,1 44,1

43

1
ca a a a

d
    
  , 

        2 1 * 2 2
43,2 32 33,2 44,2

43

1
ca a a a

d
    
  , 

   2 1 *
44,1 41

14

1
2Ima a  

 
, 

   2 1 *
44,2 41

24

1
2Ima a  

 
, 

2

43
2

43

2 c
cD

d

 
 . 

At the third order, the result is 
    21 3 †

41(42) 41(42) 1(2) 1(2) 41,1(2) 1(2) 1(2) 1(2) 1(2) 1(2)
ˆ ˆ ˆ ˆ ˆ+p p p p p p pS a E a E E E    ,     (9) 

where  

     2 * 2 2
32,1 31 33,1 44,13

41 1 2

31 41

2c

c

a d a a
a

d d

   
 

 
， ,  

     2 * 2 2
32,2 32 33,2 44,23

41 2 2

32 42

2c

c

a d a a
a

d d

   
 

 
， . 

Substituting Eq. (9) into Eq. (2b), we derive a nonlinear equation for 1pE  
and 2pE : 

2
†

0 4
ˆ ˆ ˆ ˆ 0l pl l pl pl pl pli K E W E E E

z

 
    

 
,        (10) 

where 1,2l   refer to the two probe fields, 22 (3)
4 4/ (2 p )l pl pl lW c  , 

4(3) 3 (3)
4 0 41,p / ( )pl a p l lN e a   is the third-order nonlinear optical susceptibility, 

and 4p l  is the electric-dipole matrix element associated with the transition 

from state l  to 4 . 

Taking the transformation 0Re( )ˆ ˆ li K z
pl plE E e , the QNLS equation is 

expressed as follows: 

0

2
2 Re( )†2

0 42

1 ˆ ˆ ˆ ˆ ˆ ˆ 0
2

li K zl
l pl pl l pl pl pl pl pl

gl

K
i K E E W E E E iF e

z V t t


    
              

 .  (11) 

Finally, we define Langevin noise operator, 0Re( )
disp

ˆ ˆ2 li K z
pl plf L F e
 , and 

the scaled (dimensionless) wave function 0
ˆ ˆ /l pl lU E n , where 0 1ln  is 

a typical mean photon number in the probe fields, disp2Lzs  , 

0( / ) /glt z V t   , disp absv L L , 1(2) disp nlinlg L L , 2
disp 0 2/ Re( )lL t K  is the 

dispersion length, 
12

nlin 0 Re( )plL n W


  
  

 is the nonlinearity length, and 

abs 01 Im( )lL K  is the absorption distance. Thus, Eq. (11) can be written as 
the dimensionless form: 

 
2 2 2

1 1 2 22
ˆˆ ˆ ˆ ˆ ˆ ˆ2l l l l l l pli U U g U g U U ivU if

s 

 
     

 
.       (12) 
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Here ˆ
plf  are scaled Langevin noise operators, lg   is the scaled 

dimensionless Kerr-nonlinearity coefficient with 1,2l   and 1,2  . s ,   
and   are the dimensionless propagation distance, time, and absorption 
coefficient, respectively. 
 
3. Results and discussion 

(1) quantum squeezing in two component solitons 
The model described above can be realized by selecting appropriate 

physical systems. In particular, one can use Rb87  atoms tuned to the D1-
line ( 2 2

1/2 1/25 S 5 P ) transition with energy levels: 2
1/25 , 1, 11 FS F m   

, 1/25 , 2, 12 FS F m   , 1 25 , 2, 03 FS F m  , 2
1 25 , 2, 04 FP F m 

[17]. The corresponding decay rates are 2 3 2 1.0MHz    and 
4 2 5.75MHz  , electric dipole matrix elements 

27
14 24| | | | 2.54 10 C cmP P   (here C stands for the Coulomb unit of 

electric charge), atomic density 10 33.69 10 cmaN   , other realistic 
parameters being 2 75MHzc    , 2 0  , 3 2 15MHz    , and 

4 2 8MHz    [18].  
Based on the physical parameters given above, the dimensionless 

absorption coefficient is 21.21 10 1    , which means that the damping 
term ˆ2 li U  in Eq. (12) may be neglected. In addition, in the ultra-cold 
environment, one has pj Bk T  , and 0thn  , thus the two-time correlation 
functions for the induced Langevin noise operator ˆ

plf  makes no 

contribution to the normally-ordered correlation functions of the system’s 

operators [19]. 
To investigate quantum nonlinear dynamics governed by Eq. (12), we 

replace operators ˆ lU  by two c-number functions 01U  and 02U (or 02U  ), hence 
the soliton solutions are obtained in the classical form: 

     01 11 02 12 201 11 02 12
01 01 01 01 01 01 01, sech 2 exp

2 2

A g A g A g A g
U s p s ip ip s i     

  
        

 
,   

(13a) 

      20
2
2020202020

2202120122021201
02 exp2

2
tanh

2
,  isipipsp

gAgAgAgA
sU 











 ,   

(13b) 

     01 21 02 22 201 21 02 22
02 02 02 02 02 02 02, sech 2 exp

2 2

A g A g A g A g
U s p s ip ip s i     

  
         

 
.   

(13c) 
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Here 0lA  is the amplitude of the input probe field. Equations (13a) and 
(13b) represent the bright-dark soliton pair, while Eqs. (13a) and Eq. (13c) 
produce the bright-bright soliton solution. 

The amplitudes of these bright-dark and bright-bright soliton pairs ( 01U

and 02U , or 01U and 02U  , respectively) and the respective full widths at 
half maximum/minimum (FWHM, labeled as 01F  and 02F ) are plotted in 
Figs. 2(a-c), for different values of the Kerr coefficients lg  . The evolution 
of the bright-bright and bright-dark soliton pairs is displayed in Figs. 2(d) 
and Fig. 2(e,f), respectively. The two bright solitons demonstrate similar 
evolution along the propagation axis. We find that when =1.2lg   the 
amplitude of 01U  increases with propagation distance s , and its FWHM 
decrease with s . This phenomenon means that the bright-bright soliton 
pair is squeezed effectively. However, when the nonlinear coefficient 
decreases ( =0.8lg  ), the bright solitons show an anti-squeezing effect as 
their amplitudes decrease with s . Figures 2(b,e) show the bright-dark 
soliton pair with =1.2lg  . Both the bright and dark solitons are squeezed in 
the course of the propagation. With smaller nonlinear coefficient ( =0.8lg 

), the bright and dark solitons show an anti-squeezing effect [Fig. 2(c,f)]. 
According to the above discussions, we arrive at the following 
conclusions: (1) The soliton squeezing has no connection with the types of 
soliton pair. (2) The soliton squeezing increases with the growth of Kerr 
nonlinearities lg  .  
(2) Quantum dynamics of slow-light soliton pairs and atomic spin 

We here introduce a quantum correction, assuming large photon number 

0ln  and weak quantum fluctuation of the solitons. To this end, we adopt 
the effective Hamiltonian of the system as 

01 21 02 22
ˆ ˆ ˆ

effH H H H H    ,                      (14a) 

 
2

2 2

0 1 01 2 02 02
-

l l l l lH d g U g U U 






 
     

 
 ,               (14b) 

    
2

2 2† † †

2 1 1 01 2 02 1 0 01 1 02 2 1 1 1 12
-

ˆ ˆ ˆ ˆ ˆ ˆ
l l j l l l l l l l l l lH d U g U g U U U U g U g U U U U 







   
         

   
 . 

(14c) 
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Fig.2 Classical squeezing (compression) of the widths of slow vector bright-bright 
solitons (a,d) and bright-dark solitons (b,c,e,f) by different Kerr nonlinearities lg  , 
where panel (d) corresponds to (a), (e) corresponds to (b), and (f) corresponds to (c). 
In panels (d,e,f), s  is the same scaled propagation distance as in Eq. (12). Other 
parameters: 01 022, 1A A  , 1 1g   , 2 2g   , 0 0.1lp  , 0 0l  . 

 
Here the dimensionless probe fields     ,000  sUU ll , where lU1

ˆ  are the 
annihilation operators of photons in the probe field characterizing the 
quantum fluctuations, with commutators †

1 1 1
ˆ ˆ[ ( , ), ( , )] ( )l l lU s U s       

[20,21]. To perform the rigorous diagonalization of ˆ
effH , we redefine 

 01 1 02 2 0( ) 2l l lA g A g     ,  1 01 1 02 2
ˆ ˆ2l l l lU A g A g w  . This leads to 

 
 01 01 11 02 12 † 2 † †

21 1 1 1 1 1 1 1 1 1
ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ= sech

2

A A g A g
H d w L w w w w w 






  
  , 

 
 02 01 21 02 22 † 2 † †

22 2 2 2 2 2 2 2 2 2
ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ= tanh

2

A A g A g
H d w L w w w w w 






  
  , where 

2
2

1 12
1

ˆ 4sech 1L 



   


, 

2
2

2 22
2

ˆ 4 tanh 1L 



   


, and operators ˆ lw  represents 

quantum fluctuations in the system, characterized by commutators 
†ˆ ˆ[ ( , ), ( , )] ( )l lw s w s       . 

Thus, the problem of the diagonalization of ˆ
effH  transforms into how to 

find a set of complete mutually orthogonal eigenfunctions that can be used 
for the expansion of ˆ lw . By using the following Bogoliubov canonical 

transformation, we expand ˆ lw  as 
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                 † †ˆ ˆ ˆ ˆ ˆ, , , + , ,l j l jl j l jl l l l l
j

w s u a s v a s dk u k a s k v k a s k    




          ,  

(15) 
Then, spectra of excited solitons are composed of discrete and 

continuous components. For the discrete part,  j lu  ,  j lv  ( 1,2j  ) are 

eigenfunctions and ˆ ( )jla s , †ˆ ( )jla s  are the annihilation operators of photons, 

while  ,lu k ,  ,lv k  and  ˆ ,la s k ,  †ˆ ,la s k are eigenfunctions and 
annihilation operators for the continuous spectrum. The annihilation 
operators obey the commutation relations †ˆ ˆ[ ( ), ( )]jl j l jja s a s   , 

†ˆ ˆ[ ( , ), ( , )] ( )jl jla s k a s k k k   . 
Following Refs. [22,23], both discrete and continuous spectrum satisfy 

the BdG equations for the eigenstates: 
     1 1 1 2 1 1 1

ˆ sech sechq q q qLu v u          ,      1 2 1 2 2 2 2
ˆ sech tanhq q q qLu v u           

(16a) 
     2 1 1 2 1 1 1

ˆ sech sechq q q qL v v v         ,      2 2 1 2 2 2 2
ˆ sech tanhq q q qL v v v          

(16b) 
where q j  is for the discrete spectrum, and q k  is for the continuous 
spectrum. The analytical solutions of Eqs. (16) are found as 

 
       

 
1

2
1 2 1 2

1 2

tanh tanh tanh tanh
,

2 1
ik

k ik
u k e

k


   




     


,     (17a) 

 
       

 
2

2
1 2 1 2

2 2

tanh sech tanh sech
,

2 1
ik

k ik
u k e

k


   




     


,       (17b) 

 
   

11 2
1

sech sech
,

2
ikv k e  




  ,  
   

21 2
2

sech tanh
,

2
ikv k e  




  ,   (17c) 

 
 3

1

2 tanh
sech

2
l l

l lu
 

 
 ,  

 
 3

2

tanh
sech

2
l l

l lu
 

 
 ,   (17d) 

 
 

 3
1

tanh
sech

2
l l

l lv
 

 
  ,  

 
 3

2

tanh
sech

2
l l

l lv
 

 
  ,   (17e) 

We can see that ˆ lw  can be expanded in terms of u  and v， which 

constitute a complete set of eigenfunctions for both discrete and 
continuous spectra. Substituting Eq. (15) into Eq. (14), we diagonalize ˆ

effH  
as 
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   
   

2 2 2 2 2
01 01 11 02 12 01 01 11 02 12 2 2 †

1 21 11 1 1 1 1 1
ˆˆ ˆ ˆ ˆ- - , ,

12 8eff k

A A g A g A A g A g
H P Q dk a s k a s k





   
   

 
 ,     

(18a) 
   

   
2 2 2 2 2
02 01 21 02 22 02 01 21 02 22 2 2 †

2 22 12 2 2 2 2 2
ˆˆ ˆ ˆ ˆ- - , ,

12 8eff k

A A g A g A A g A g
H P Q dk a s k a s k





   
   

 
 .    

(18b) 
Here ˆ

jlQ and ˆ
jlP are the coordinate and momentum operators with 

†ˆ ˆ ˆ( ) 2jl jl jlQ a a   and †ˆ ˆ ˆ( ) 2jl jl jlP i a a  , respectively. According to the 

Heisenberg equation of motion ˆ ˆ ˆ[ , ]effi A s A H   , we obtain  

   1 1
ˆ ˆ 0l lQ s Q ,            2 2

ˆ ˆ 0l lP s p ,            (19a) 

 
 

   
2 2

01 01 11 02 12

1 1 1
ˆ ˆ0 0

2l l l

A A g A g s
P s Q P


  ,  

 
   

2 2
02 01 21 02 22

2 2 2
ˆ ˆˆ 0 0

2l l l

A A g A g s
Q s P Q


  ,     (19b) 

   
 2 2

0 01 1 02 2
ˆ ˆ, 0, exp

2
l l l

l l kl

A A g A g
a s k a k i s

 
 
  

.            (19c) 

According to Eqs. (18) and Eqs. (19), we find that the continuous 
spectrum gives no contribution to the quantum fluctuations, as there is no 
phase shift between different modes in the course of the propagation of the 
waves. For the discrete spectrum, the quantum fluctuations originate from 
ˆ

jlQ  and ˆjlP . As the waves propagate, 1
ˆ

lQ  and 2
ˆ

lP  remain unchanged, 1
ˆ

lP  and 

2
ˆ

lQ  being functions of parameters lg  . Thus we get ˆ ˆ( ) ( ) 0jl jlQ s P s  , 
2 2ˆ ˆ(0) (0) 1 2
jl jl

Q P  , 1 2

2 2ˆ ˆ( ) ( ) 1 2
l l

Q s P s  ,  
 3 4 3 4 2

01 01 1 02 22
2

1

2 16
l l

l

A A g A g s
Q s


  , and 

 
 3 4 3 4 2

01 01 1 02 22
1

1

2 16
l l

l

A A g A g s
P s


  . 

To describe quantum features of the vector slow-light solitons, we 
investigate the quantum squeezing. The quadrature operator ,

ˆ
jlX  is 

represented as [24,25] 

       †

,

1 ˆˆ ˆˆ ˆ cos sin
2

i i
jl jl jl jl jlX a s e a s e Q s P s 

         ,     (20) 

Here ,
ˆ

jlX   stand for amplitudes ˆ jla  and angle (phase)   of the quantum 
fluctuations for the vector soliton pairs. Thus the probe fields are written 
as  

1 2
ˆ ˆ

pl l lE E E   ,                    (21a) 

 01 11 02 12
11 01 1

0

sech cos ,
2 g

A g A g z
E D t z t

t v

  
     

   
,   01 21 02 22

12 01 2
0

tanh cos ,
2 g

A g A g z
E D t z t

t v

  
     

   
 ,   

(21b) 
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               0
2 ,

,
1,2 1,2 20

ˆ ˆ ˆcos cos sin sinl
l j l j j l j jl j l j j l j

jl
j jl

D
E u t v t X u t v t X

A
 


   


 

 
              

 
  .  

(21c) 
Here 1lE are the vector soliton fields, 2

ˆ
lE describes the quantum fluctuations 

which are described by the quadrature operators  sX jl
2

,
ˆ

 , eigenfunctions 

 j lu t  and  j lv t , here 
 01 1 02 2 2

0

4 0

Re( )

Re( )e p
l l

l

p l

A g A g K
D

Wt


 , 

 2 2
0 01 1 02 2

0
disp

( , ) ( )
8

l l l

l pl pl

A A g A g
z t k K z t

L



     [18]. 

Then the squeezing ratio of the two probe fields (i.e., vector soliton 
pairs) is defined as    2 2

, ,
ˆ ˆ 0jl jl jlR R X s X    [26,27], where the quadrature 

variances  sX jl
2

,
ˆ

  is obtained in the following form: 

   cossin)(
2

1
sin)(

8

1

2

1ˆ 22
02

2
12

2
01

2
11

224
02

4
12

4
01

4
11

2
,11 sAgAgsAgAgsX  ,  

(22a) 

   cossin)(
2

1
)cos-(sin)(

8

1

2

1ˆ 22
02

2
22

2
01

2
12

2224
02

4
22

4
10

4
12

2
,21 sAgAgsAgAgsX  ,  

(22b) 

   cossin)(
2

1
cos)(

8

1

2

1ˆ 22
02

2
12

2
01

2
11

224
02

4
12

4
01

4
11

2
,21 sAgAgsAgAgsX  ,  (22c) 

 2 4 4 4 4 2 2 2 2 2 2 2 2
22, 21 01 22 02 21 01 22 02

1 1 1ˆ ( ) cos -sin ( ) sin cos
2 8 2

X s g A g A s g A g A s        （ ） ,   

(22d) 
From Eq. (22), we find that the values of 2

,
ˆ ( )jlX s  are composed of two 

parts: the vacuum value 1/2 and the quantum-fluctuation part which is the 
function of the dimensional propagation distance s , angle  , and Kerr 
nonlinearity lg  , as shown in Fig. 3. It is seen that, at the beginning of the 
propagation of two probe fields, there are no quantum fluctuations, and the 

variances are  
2

1
0ˆ 2 sX jl,θ  for all the angles. In the course of the 

propagation, the quantum fluctuations emerge, and these results strongly 
vary with the change of  . The optimum angle opt  is defined as one 
corresponding to the minimum value  sX jl,θ

2ˆ . At opt , the quadrature 
variances  sX jl,θ

2ˆ  in the deep blue domains are much smaller than their 
vacuum value, while the squeezing ratio R  attains its minimum value, minR

. We also find that the quantum squeezing become more and more obvious 
with s . 
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Fig.3 Quadrature variances  sX jl,θ
2ˆ  as functions of the scaled propagation distance s  

and (2 )   for 01 02 1lA A g    . The figures are all plotted as per Eq. (22). 

Figure 4 shows the quantum squeezing vs. propagation distance s , angle 
 , and Kerr nonlinearity lg  . In Fig. 4(a), one sees that the squeezing ratio 

1lR  (in dB units) changes periodically with  . From here, we can obtain 

the optimal angle opt . Furthermore, opt ( )s  increases linearly with s  for 

both 2
11,
ˆ ( )X s  and 2

12,
ˆ ( )X s , as shown in Fig. 4(b). The absolute value of 

the minimum (maximum) squeezing ratio minR ( maxR ) increase obviously 
with s [as shown in Fig. 4(c)], therefore the quantum squeezing effect may 
be prominent for proper values of distance s . This phenomenon is caused 
by the Kerr nonlinearity, as shown in Fig. 4(d). We see that minR  is sensitive 

to the selection of the nonlinearity parameters lg  , this trend being stronger 

when the nonlinear coefficient lg   is larger. 
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Fig. 4 (a) Squeezing ratio 11(12)R versus angle (2 )   for the scaled propagation 

distance 0.2,0.4,0.6s  . (b) Optimal angle opt  as a function of s . (c) Minimum 

squeezing ratio minR  and maximum squeezing ratio maxR  versus s . Panels (a-c) are 

plotted with the parameters 1lg   . (d) minR  as a function of s  with different 

nonlinear parameters lg 

 

Fig. 5. (a) Atomic spin squeezing degree  
2
11 12  versus s . (b) Minimum squeezing 

ratio minR  versus s , where the solid and dashed lines are results for the sech-shaped 

LO (local-oscillator) pulse and the ideal LO pulse, respectively. Parameters 01 2A  , 

02 1A  , 1 1lg  , 2 2lg  , 0 0l  , 1plw  , 1cw  , 10plk  . 
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Similar to quantum squeezing of vector optical soliton pairs, atomic spin 
squeezing is also an important feature of cold atomic system. The atomic 
spin operators are defined as 

 12 21

1
ˆ ˆ ˆ

2xs    ,  12 21

1
ˆ ˆ ˆ

2ys
i
   ,  11 22

1
ˆ ˆ ˆ

2zs    ;       (23) 

21 21

1
ˆ ˆ ˆ ˆ ˆcos sin

2
i i

x ys e e s s 

          .                  (24) 

In this work, the atomic spin squeezing degree is defined as 
22 2ˆ ˆ ˆmin

l l ll zs s s     
  

.                       (25) 

Here  0ˆ ˆ
2l l l

pl

c

g n
s s s    


, 

 1

01 11 02 12
01 11 02 12 1

0

sech cos
2 g

A g A g z
S A g A g t

t V

  
      

   
, and 

 2

01 21 02 22
01 21 02 22 2

0

tanh cos
2 g

A g A g z
S A g A g t

t V

  
      

   
, with 

   l l pl c pl c lk k z t         .  

The spin squeezing degree 2
1l  with respect to s  is shown in Fig. 5(a). 

There is no spin squeezing effect in the beginning ( 2
1 1l  ), then 2

1l  
decrease rapidly with s  and remain constant at 5s  . The spin squeezing 
effect is due to the action of the Kerr nonlinearities lg  in the system. 
Furthermore, a balanced homodyne detection technique is performed to 
measure the quadrature variances  ,

ˆ
jlX s which is expressed as 

         † †

, , ,
ˆ ˆ ˆ, ,jl j l jl lX s d w s w s        





    , where 

     , cos sin 2jl j l j li         ,      j l j l j lu v     , and 
     j l j l j lu v     . Here  ,jl    is a coherent pulse injected into the 

atomic gas from a local oscillator (LO), which is mixed with the input 
probe pulses [i.e., quantity ˆ lw  in Eq. (15)] through a 50:50 beam splitter, 
and the mixed signals from the two output paths are detected by two 
photodetectors, respectively. Because reshaping a pulse to be a 
combination of  ,jl    is difficult, we adopt  1, sech( )exp( ) 2j i     

and  2, tanh( )exp( ) 2j i     as a LO pulse in practice, thus 

 '
, 1 1

ˆˆ ˆcos 2sinjl l lX s Q P     is obtained. Figure 5(b) displays the 

predictions for the minimum squeezing ratio minR  of vector optical soliton 
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pairs as functions of propagation distance s , cf. Ref. [26]. One can see that 
the minimum squeezing ratio obtained by using the sech-shaped LO pulse 
is getting close to that produced by the ideal LO pulse with s  increases. 

 
 
4. Conclusions 

In this work, we have developed the quantum theory to investigate vector 
slow-light soliton pairs in the double-EIT-based atomic gas. Using the 
Heisenberg-Langevin and Maxwell equations, we have derived the vector 
QNLSE (quantum nonlinear Schrödinger equation) controlling the 
evolution of the two probe-field envelopes. We have constructed the 
effective Hamiltonian and performed rigorous diagonalization to deal with 
quantum fluctuations of vector slow-light soliton pairs and atomic spin 
associated with the pairs. It is found that vector soliton pairs and atomic 
spin can be significantly squeezed in the course of the propagation. The 
squeezing degree depends on the propagation distance, the angle and the 
strength of the Kerr nonlinearity.  

The analysis reported in this work can be extended by considering 
effects of collisions between vector solitons on the quantum squeezing, 
and generation of quantum entanglement between solitons by collisions, 
cf. Ref. [28] and [29]. 
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ABSTRACT 

 
The paper considers mass minimization of an axially functionally 

graded (AFG) Timoshenko beam of a variable cross-sectional area, with a 
specified fundamental frequency. The analyzed case of coupled axial and 
bending vibrations involves contour conditions as the cause of coupling. The 
problem is solved applying Pontryagin’s maximum principle, where the beam 
cross-sectional area is taken for control. The two-point boundary value problem 
is obtained, and the shooting method is used to solving it. The property of self-
adjoint systems is deployed. The percent saving of the beam mass is 
determined, achieved by using the beam of an optimum variable square cross-
section as compared to the beam of a constant cross-section. The procedure 
developed by the author in his earlier papers is extended herein to the case of a 
limited cross-sectional area. The second generalization relates to the general 
case of contour conditions at the beam ends. 

 
 

1. Introduction 
 
Some elastic bodies can be modeled to obtain sufficient accuracy by using 
Euler-Bernoulli or Timoshenko beam [1] in the analysis of their vibrations.  
Determination of optimal shapes applying different optimization criteria is an 
engineering task of utter importance. In a static sense, these problems are 
associated with the optimization of columns against buckling. Papers [2,3] 
employ a buckling optimization approach based on the Hencky bar-chain model 
of beams, whereas [4-8] consider a series of shape optimization problems of 
columns against buckling by implementing Pontryagin’s maximum principle.  
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In this paper, the dynamic aspect of beam optimization includes references 
related to the problem of mass minimization of rods when the value of 
fundamental frequency of these rods oscillation is specified. Among the most 
outstanding references relevant to this problem are [9-11] where the minimum 
mass optimization problem is considered within the framework of axial 
vibrations of cantilever beams with a variable cross-section carrying 
concentrated mass at their free ends. Moreover, [9,10] deal with the tapered 
type of beams, whereas [11] is concerned with stepped ones. Paper [12] 
analyzes the impact of a variable cross- section (the linear relationship between 
the second area moment and the area) of Euler-Bernoulli beams in bending 
vibrations on the extremal values of the fundamental frequency, and [13] studies 
the conditions of equivalence between maximum frequency and minimum mass 
optimization problems. In [14] an optimality criterion method for weight 
minimization of structures under the fundamental frequency constraint in the 
form of inequality is presented. Mass minimization problems with multiple 
frequency constraints of equality and inequality types are reported in [15,16]. 
Paper [17], besides frequency constraints, studies simultaneously stress, 
displacement and cross-sectional area multiple constraints. The mass 
minimization of structures together with maximization of structural strain 
energy (multiobjective optimization problems) can be found in [18]. Paper [19] 
provides an example of the application of bio-inspired algorithms (firefly 
algorithm, bat algorithm and cuckoo search algorithm) in the problem of mass 
minimization of a single-girder bridge crane. Today, this type of algorithms has 
increasing application in complex optimization problems with multiple 
objective functions, design variables and equality and inequality constraints, for 
more details refer to [20].  
Based on a review of available literature, it is evident that no results are 
reported in the field of mass minimization of beams with prescribed 
fundamental frequency, whose oscillatory behavior can be represented in the 
form of coupling between fundamental types of oscillations (axial vibrations, 
bending vibrations, torsion vibrations). The fact mentioned above makes this 
field of research potentially attractive. Otherwise, the coupling of different types 
of oscillations can be conditioned, for instance, by the cross-section geometry of 
a beam (cross-section with one symmetry axis, which causes coupling of 
bending and torsion vibrations [21]), or by complex contour conditions at the 
beam ends (coupling of bending and axial vibrations [22]).  
Our paper [23] considers the second cause of coupled oscillations for the case of 
simply supported Euler Bernoulli beam with inclined right end. Moreover, the 
approach from [4-8] based on applying Pontryagin’s maximum principle is 
extended to the mass minimization problem of the mentioned simply supported 
beam with coupled bending and axial vibrations at prescribed fundamental 
frequency. Here, it is worth highlighting that in [4-8] it was for the first time in 
literature that the occurrence of the self-adjoint system is observed in the 



 
 
 
 
 
98 A. OBRADOVIĆ 

 

 
 

problems of determining optimal shapes. This allows for twice fewer 
differential equations of the TPBVP problem of the Maximum principle as 
compared to classical problems and it is known that the difficulties in numerical 
solving are the main reason why the authors of the works dealing with the 
application of the mathematical theory of optimal processes often avoid using 
Pontryagin’s principle.     
Our later works [24-25] research an AFG Timoshenko cantilever beam instead 
of Euler Bernoulli homogeneous beams.  
This paper extends additionally the procedure of shape optimization to the 
general case of contour conditions and introduces the limits of cross-sectional 
dimensions.  It is necessary to limit the cross-sectional area from the bottom 
side so as not to disturb the strength of the beam. The upper limit can be defined 
by the beam initial shape that yields optimal shape by material removal, space 
limits, or to ensure the validity of the appropriate theory (Euler Bernoulli or, in 
this case, Timoshenko theory).  

 
 
2. Problem statement for determining the optimal profile shape  

 
The Timoshenko beam [1] (Fig.1) of length 𝐿, variable cross-sectional area 
𝐴(𝑧) and axial moment of inertia 𝐼𝑥(𝑧) = 𝑠𝐴(𝑧)2, where coefficient s depends 
on the cross-sectional shape (for the square cross-section = 1/12 , while in the 
case of circular cross-section 𝑠 = 1/4𝜋 ), is considered. In the case of AFG 
material, the density 𝜌(𝑧), Young’s modulus of elasticity 𝐸(𝑧) and the shear 
modulus 𝐺(𝑧), are variable along the beam axis. At the right end a body of mass 
𝑀𝑟 and moment of inertia 𝐽𝐶𝑟 is fixed eccentrically to the central axis, where the 
position of the center of mass is defined by quantities 𝑒𝑟 and ℎ𝑟. The 
corresponding stiffnesses of springs at the right end are 𝑐𝑟, 𝑐1𝑟 and 𝑐2𝑟. All 
quantities given at the left end have index l instead of index 𝑟. 
  



 
 
 
 

 
 MASS MINIMIZATION OF AN AFG TIMOSHENKO BEAM 99 

 

 
 

 

 
 

 
Fig. 1 AFG Timoshenko beam of variable cross-section with bodies 

eccentrically located at the beam ends  
 

Differential equations of Timoshenko beams, oscillating in the axial and 
bending direction, in the case of the linear theory, can be derived based on 
dynamic equations of the elementary particle of the beam of mass 

  ( )dm z A z dz  and a corresponding moment of inertia of masses

  ( )x xdJ z I z dz : 
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t z
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



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    

 
    

 
        

                         (1) 

where  ,u z t  and  ,w z t  are axial and transverse displacements,  ,z t  is the 

cross-sectional angle of rotation,  ,AF z t  represents the axial force: 

 
( , )

( , ) ( ) ( ) ,A

u z t
F z t E z A z

z





                                                                          (2) 

the bending moment is given by the expression: 
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( , ) ( ) ( ) ,F x

z t
M z t E z I z

z


 

                                                                     
 (3) 

where for Timoshenko beams [1] the slope angle of the elastic line is: 

 
( , ) ( , )

, ,
( ) ( )
Tw z t F z t

z t
z kA z G z




 


                                                                      (4) 

where 𝐹𝑇(𝑧, 𝑡) is the transverse force and 𝑘 is the Timoshenko coefficient.  
The system of linear differential equations (1-4) is solved by the method of 

separation of variables [1]:  
( , ) ( ) ( ),

( , ) ( ) ( ), ( , ) ( ) ( ), ( , ) ( ) ( ),

( , ) ( ) ( ), ( , ) ( ) ( ),
A a

T t F f

w z t W z T t

z t z T t u z t U z T t F z t F z T t

F z t F z T t M z t M z T t

 



  

 

                               (5)
 

where 
2

2
2

( )
( )

T t
T t

t



 


 and 𝜔 represents a circular frequency. If we want all 

functions (5) to retain their physical dimensions and units, the function 𝑇(𝑡) 
will be considered to be dimensionless. 
Further procedure yields the following differential equations: 

2

2 2

2 2

( )( ) ( ) ( ) ( ) ( )
, ( ) , ,

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( ), ( ) ( ) ( ),

( )
( ) ( ) ( ) ( ).

fa t

a t

f
t

M zU z F z W z F z z
z

z E z A z z kA z G z z E z sA z

F z F z
z A z U z z A z W z

z z
M z

F z z sA z z
z




   

  

  
    

  

 
   

 


 



        (6)
 

Optimization problem, considered in this paper, includes defining the function 
of change of the cross-sectional area 𝐴(𝑧) that will lead to the Timoshenko 
beam mass minimization, where the fundamental frequency of oscillation 𝜔1 =
𝜔∗ is specified. In that regard, the functional that is minimized is of the form: 

 
0

( )
L

J z A z dz  ,                                                                                       (7) 

differential equations (6) represent the equations of state. 
 
Contour conditions at the ends can be written using differential equations of 
planar motion for each of the added rigid body in a way as described in more 
detail in [22]. Contour conditions at the left end are of the form:  
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whereas at the right end: 
 
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                                             (9) 

 
3. Determining the optimal profile shape of a beam by applying 

Pontryagin’s maximum principle 
 
The optimal control problem (6-9) will be solved by applying Pontryagin’s 

maximum principle [26]. To this end, let us write Pontryagin’s function: 
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(10) 

where 0 , ( ), ( ), ( ), ( ), ( ), ( )
a t f

U W F Fz z z z z z         are costate variables, which 

satisfy the coupled system of equations: 
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                     (11) 

where 
0 is an arbitrary non-positive constant. In problems of this type it is 

commonly taken that 0 1   . 

The transversality conditions [26] can be represented in the form as follows: 

0

( ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )) 0,

a

t f

U W F a

L
F t M f

z U z z W z z z z F z
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 

       

                               
(12) 

where     is an asynchronous variation. Based on initial and final conditions 

(8,9), the following variation dependencies are obtained at the left end: 
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and at the right end: 
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Substituting (13) and (14) in (12), the transversality conditions are obtained: 
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(15)
  

If the conjugate vector coordinates are expressed via state quantities using the 
scalar parameter p:  

, , , , , ,
f t aU a W t f M F FpF pF pM p pW pU                 (16)  

it can be noted that differential equations of the coupled system (11) are reduced 
to the governing system (6), and that the transversality conditions (15) are 
satisfied in the case when the conditions at the left end (8) and at the right end 
(9) are satisfied. This has been noted in the shape optimization problems 
reported by Atanacković et al. [4-8] and has significantly facilitated the 
application of Pontryagin’s maximum principle. It is very well known that 

numerical difficulties related to computations of the costate variables are those 
that are limiting the application of maximum principle. 
Optimal controls ( )A z  are defined from the maximum condition of 
Pontryagin’s function (10): 
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which, considering (16), is reduced to the conditions: 
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Based on (19), without loss of generality, it can be taken that 
2

2
1

s
p

m
  , so that 

the expression for defining optimal control is reduced to the 4th degree 
polynomial with respect to ( ) :A z
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            (20) 

 
The procedure of numerical solving of the two-point boundary value problem 
(6-9,20) consists of the three-parameter shooting that involves selecting 
𝐹𝑎(0), 𝐹𝑡(0), 𝑀𝑓(0) (where 𝑈(0), 𝑊(0),  (0) can be calculated from (8)) to 
satisfy the relations (9).  If numerical solving is performed in the program 
package WolframMathematica [27] using function NDSolve[…], it is not 

necessary to express A(z) from (20) in analytical form via state quantity, 
because this function contains in itself the procedure for numerical solving of 
the system of differential and ordinary equations.   

In the case of restrictions imposed on the cross-sectional area: 
                         min max( )A A z A                                                                 (21) 
it is necessary to check whether the values obtained from (20) satisfy the 
restrictions (21). If they are lower or higher compared to the permissible limit 
values, the cross-sectional areas are constant over those intervals, amounting to 

maxA or minA . As a rule, when solving such problems, the optimal shape is first 
determined without considering the restrictions (21). Thereafter, it is attempted 
to find a control that satisfies all conditions of the Maximum principle of such 
structure that on the segments where an area larger than maxA is obtained by 
solving (20), it is taken that in that segment a constant cross-section is of 
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maximum permissible area. Similarly, in the case when the area is smaller, but 
it is then taken minA . 

Positions iz  where a variable cross-section joins a constant cross-section of the 
maximum area are determined from the conditions: 
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however, in the case of merging with a segment of the constant cross-section of 
the minimum area: 
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               (23)          

 
 

4. Numerical example 
 
The shape optimization procedure will be presented using the example of a 
cantilever beam of a square cross-section, length L=1m, with a rigid body 
placed eccentrically at the free end, as shown in Fig. 2. The rigid body has mass 

10rM kg and moment of inertia 22.5CrJ kg m . Axial and transverse 

eccentricities of the rigid body amount to 0.5r re e h h m    . In AFG 

material considered herein the laws of change in density and modulus of 
elasticity are taken as in [24,25]: 

0 0 3

11
0 0 2

( ) (1 0.8cos( )), 7850 ,

( ) (1 0.2cos( )), 2.068 10 .

kg
z z

m
N

E z E z E
m

  

   

   



                                              (24) 

 
Fig. 2 [25] Cantilever beam of a variable square cross-section 

 
For Timoshenko beams of a square cross-section, = 1/12 . The Timoshenko 

coefficient, in this case, amounts approximately to 𝑘 =
5

6
. The shear modulus is 
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defined using the Poisson coefficient 𝜈 from the expression 𝐺(𝑧) =
𝐸(𝑧)

2(1+𝜈)
, 

where for its value it is taken here that 𝜈 = 0.3. 
Also, let the required value of the fundamental frequency be 𝑓 = 10 𝐻𝑧 which 
leads to the fundamental circular frequency 𝜔∗ = 20𝜋 𝐻𝑧. 
Let us seek a solution of the optimization problem first for the case when there 
are not restrictions to the cross-sectional area. When performing a three-
parameter shooting in the program package WolframMathematica [27], three 
missing values of the three parameters at the left end are obtained: 

(0) 219.631 , (0) 451.863 , (0) 848.826 ,a t fF N F N M Nm            (25) 

It should be noted here that from the contour conditions (8), when stiffnesses 
are of infinitely large values (in the case of a clamped left end), zero values of 
corresponding displacements U(0), W(0), φ(0) formally follow too. 
Fig. 3 shows values of the optimum cross-sectional area shape and its 
corresponding sides of a square (red line). The dashed line denotes values 

corresponding to a constant cross-sectional area *A and the side of a square *a , 

respectively * 2 *0.00207910 , 0.0455971A m a m   for which the 
fundamental circular frequency is 𝜔∗ = 20𝜋 𝐻𝑧 , and which were obtained in 
paper [24]. 

 

 
Fig. 3 Optimum cross-sectional side of a square a(z) 

 
Relative material saving compared to the cantilever beam of a constant cross-
section corresponding to the same circular frequency amounts to:   
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where numerical integration was done in (26).  
Consider the case when the cross-sectional area is limited so that amax=0.06m, 
amin=0.035m. Therefore, it can be assumed that at the initial segment the beam 
is of the maximum possible area and at the end segment it is of the minimum 
area. 
Besides unknow quantities Fa(0), Ft(0), Mf(0), it is also necessary to determine 
positions z1,2 of coupling occurrence between maximum of minimum corss-
section varying in area. 
These five parameters are chosen so that after numerical integration of the 
system (6) final conditions (9) as well as conditions (22,23) are satisfied at the 
coupling points. The values obtained as solutions are  
 
                                                                                                                          (27) 
 
and optimal shape is shown in Fig. 3 (blue line). In this case, the relative 
percent saving of the mass (26) is slightly lower and amounts to 22.97%. 
 
 

5. Conclusions 
 
This paper demonstrates the performance of shape optimization of AFG 
Timoshenko beam of a square cross-section with coupled axial and bending 
vibrations, where the beam mass minimization is done at specified fundamental 
frequency. In solving this optimization problem Pontryagin's maximum 
principle is applied. So far, Pontryagin’s maximum principle has been 

practically used for solving optimization problems in buckling so that in this 
paper its application is extended to optimization problems in oscillating body. 
The above procedure can be also applied to the general case of a cross-section 
such as circular, etc. The above procedure can be also applied to the general 
case of contour conditions at the beam ends, including bodies eccentrically 
positioned at both ends, different types of supports at beam ends, as well as 
clamping of the bodies with different springs. By taking infinitely large 
stiffnesses of appropriate springs, the model considered can be also extended to 
the cases when the corresponding displacements in the supports equal zero.  
 
 
  

1 2

(0) 208.038 , (0) 446.939 , (0) 826.645

0.10013 , 0.77526

a t fF N F N M Nm

z m z m

    

 
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ABSTRACT 
 

Laser tweezing stability is crucial for selective inactivation of viruses, bacteria, 
and cancer tissues preserving healthy cells in body water. However, laser beam 
propagates modifying the medium, simultaneously altering itself by feedback 
mechanisms, thus, jeopardizing the control. Using multidisciplinary synergy 
between theoretical, experimental, and numerical results, we demonstrate the 
feasibility of novel soliton-tweezers controlling nanoparticles in water 
suspensions. In soft matter like body water, suspended nanoparticles are 
aspirated inside the soliton-tweezers, if their refractive index is larger than the 
background one. They are expelled whenever their index is lower. In both case, 
the nonlinear density distribution of nanoparticles induces beam self-focusing 
that compensates self-defocusing effects, generating soliton-tweezer. 
Experimentally measured self-focusing and self-defocusing coefficients are 
incorporated in established novel synergetic soliton-tweezer complex intensity 
equation describing experiments realistically. Virus-nanoparticles with resonant 
frequencies higher than the one of soliton-tweezer would be possibly inactivated 
paraxially. 
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1. Introduction 
 
    First and second law of equilibrium thermodynamics are the 
foundations of physics. However, every action involves utilization, 
hence, loss of energy, but this is only a transformation to another energy. 
Macroscopic laser light, i.e., electromagnetic wave is transformed into 
heat, i.e., nanoscopic agitation of interacting atoms and molecules. 
Following the second low, interacting nanoparticles are trying to reach 
the thermodynamic equilibrium, which cannot be reached since the 
system cannot be isolated. However, this strong attraction to the 
equilibrium organizes the system, making it self-organized (harmonized). 
Following 1977 Nobel Prize winner Ilya Prigogine, nonlinear dissipative 
structures are self-organized far from thermodynamic equilibrium, due to 
the intake of energy and/or matter (mainly nanomatter) [1]. The self-
organization is the compensation of antagonist effects. The fight and the 
collaboration of antagonist effects, e.g. yin and yang, are the universal 
principles of dialectic. Fortunately for us, in nature yin and yang mainly 
cooperate generating even the self-organized life. Living organisms are 
mainly composed of soft nanomatter including body cells, bacteria, 
viruses, and other nanoparticles in water suspensions. The total human 
body water volume estimated from simple anthropometric measurements 
is about 70% [2]. Healthy human body has ten times more bacteria than 
cells and countless viruses. Biomedia like blood, myosin, kinesin, 
ribosomes, liposomes, and varieties of living cells suspended in body 
water can be manipulated, tweezed, and controlled using laser beams and 
pulses [3-7]. The safety of any laser manipulation depends on good 
knowledge of its propagation in water with nanoparticles [8]. A laser 
beam propagates in nonlinear way through a nanosuspension modifying 
it. Doing this, beam is simultaneously altering itself by feedback 
mechanisms, thus, jeopardizing its control on nanoparticles [9]. The laser 
stability and robustness are of crucial importance for medical and 
biological applications e.g. photobiomodulations [7]. The laser 
dynamical stability and precision are of crucial importance, not only for 
brain  
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                                                                                                                                         (1)  

Figure 1 Self-collimated soliton becomes stable whenever the cubic self-focusing 
nonlinearity is compensating diffraction and quintic self-defocusing nonlinearity 
described by two-dimension saturating Schrödinger equation. 

surgery but also for nondestructive medical diagnostics [10].  The very 
promising mechanism to achieve the necessary stability and control of 
nanoparticles is the self-organization of the laser light inside 
nanosuspensions into solitons localized in space and in time [11-17]. The 
laser beam becomes soliton whenever antagonist effects, i.e., beam 
focusing and defocusing are balanced in self-organized dynamical 
equilibrium far from the thermodynamic one (cooperation of yin and 
yang) [18-20]. In any medium, including vacuum, laser beam is 
diffracting. In Kerr media, in rigid slab guides beam is confined into 
soliton, in the region with higher optical index of refraction due to the 
compensation of diffraction by cubic self-focusing (see Figure 1). Such a 
soliton is described by the one transverse dimension (1D) nonlinear 
Schrödinger equation (NLS) for electric field E=A(r) exp (ik0n0z) where 
A(r) is slowly varying amplitude envelop propagating following z 
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direction with wave vector k0 and vacuum index of refraction n0. 
However, 2D NLS is unstable in bulk media where both linear and 
nonlinear effects have the same width R dependence 1/R2 (see Figure 1). 
Indeed, initially dominating diffraction cannot be arrested by self-
focusing, contrary to the 1D case where the focusing is proportional to 
1/R. Therefore, amplitude decreases and soliton disappears. In opposite 
case, the self-focusing domination leads to increase of amplitude till the 
catastrophic collapse.  To be stable, solitons need to be in Kerr media 
with quintic self-defocusing nonlinearity too. Such a reinforcement of 
yin, together with diffraction compensates self-focusing cubic 
nonlinearity self-generating a soliton described by saturable 2D NLS Eq. 
(1).  

    In contrast, the particularity of the laser propagation in soft matter is 
that the easily moving nanoparticles in fluid adapt their density 
distribution in such a way that the laser beam always propagates through 
the highest index of refraction. In experimental biophysics, 2018 Nobel 
Prize winner A. Ashkin used this property in order to tweeze 
bionanoparticles using lasers [3-5].  The high frequency pressure force of 
the laser field either attracts or repels suspended nanoparticles from the 
field region, depending if the nanoparticles optical index of refraction 
(np) is either larger or smaller than the background one (nb). The 
tweezing laser beam collects paraxially, around its central axes, 
positively polarized nanoparticles having the index of refraction np higher 
than the background medium one (np>nb). Therefore, such a 
redistribution of nanoparticles density following laser Gaussian intensity 
profile always induces the nonlinear beam self-focusing [3-5,8]. In 
opposite case beam is self-focusing too, taking into account that 
negatively polarized nanoparticles with lower index (np< nb) are expelled 
from the beam. In both cases, the nanoparticles density modifications 
result in the nonlinear increase of effective index of refraction inside a 
tweezer making it always self-focusing and potentially collapsing [8,9]. 
Only solitons are stable and self-collimated due to the compensation of 
all self-defocusing effects by self-focusing in a self-created precarious 
guide corresponding to a dynamical equilibrium far from thermodynamic 
one. 

    In recent studies of the laser beam propagation in diluted noniteracting 
nanoparticles suspensions, the balance between the optical gradient force 
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and particles diffusion due to Brownian motion is achieved for long 
duration pulses [21]. For nanoparticles with positive polarizability (np > 
nb) the nonlinear Schrödinger equation (NLSE) has exponentially 
growing nonlinearities that lead to a catastrophic collapse [21,22]. In real 
nanosuspensions the wave collapse cannot take place since nonlinear 
Rayleigh scattering losses grow dramatically with increase of 
nanoparticles concentration invalidating the diluted suspension model. 
To overcome these difficulties more realistic formalisms with particle-
particle interactions were suggested [8,23-26]. In contrast to the positive 
polarizability, negatively polarized nanoparticles, having refractive index 
smaller than the background one (np < nb), are expelled from the laser 
beam minimizing Rayleigh scattering losses. The corresponding 
nonlinearity in NLSE is saturable leading to the formation of stable self-
trapped transversely localized beam, i.e., spatial soliton [8,11-13, 18-20].  

    The usual approach to tweezing of nanoparticles in suspensions is to 
artificially focalize laser tweezer in order to trap few nanoparticles in its 
beam waist, i.e., in a very small region where the beam is precariously 
self-collimated in a local dynamical equilibrium (see Refs. [3] and [4]). 
In contrast, in our innovating experiments, this tweezing self-collimation 
is extended paraxially along the entire beam in solitonic dynamical 
equilibrium, called soliton-tweezer. In this case, not only few 
nanoparticles but all nanoparticles are tweezed collectively. In order to 
establish soliton-tweezing of nanoparticles in body water, the 
prerequisites are synergetic multidisciplinary theoretical, numerical and 
experimental investigations of nanoparticles in pure water suspensions.   

    A very difficult task is to describe essentially nonlocal tweezing 
experiments measuring electric intensity I=EE, by a partial differential 
equation like NLSE that generally gives electric field E in one point in 
space and time. Therefore, in our innovating description of tweezing 
experiments in water suspensions of nanoparticles we introduce the 
nonlocality through the coupling between the heat equation and the 
generalized higher order NSL. Taking into account the estimated total 
body water volume of about 70%, the biosafety of any laser manipulation 
depends on good knowledge of solitons propagation in water with 
nanoparticles [2]. Consequently, our theoretical model in a 
multidisciplinary synergetic approach, needs confirmation by 
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experiments and numerical simulations as the prerequisite for safe 
medical and biological applications. 

 

2. Nonlocal model of self-organized soliton-tweezers     
 
    Coupling light pressure and thermal self-action, we establish a 
nonlocal variational model of soliton-tweezers self-trapped propagation 
in nanoparticles suspensions. The soliton-tweezers self-organization and 
nonlinear guiding are investigated starting from the Helmholtz equation  

∆Ě + k0
2n2Ě = 0                    (2)   

where k0=ω/c is the wavevector and Ē is the amplitude of monochromatic 
electric field Ě=Ē(Z, 𝑟⊥) exp (iωt)+cc denoting by cc complex conjugate 
[12,22,26]. The Laplasian ∆= ∂2 ∂Z2⁄ + ∇⊥

2  with the transverse one  

∇⊥
2 =

𝜕2𝐸

𝜕𝑥2 +
𝜕2𝐸

𝜕𝑦2 is associated to the field propagation variable Z and the 

transverse coordinate 𝑟⊥ = √𝑥2 + 𝑦2. The complex medium effective 
index of refraction, n depends not only on refractive indices of 
background (nb) and nanoparticles (np), but also on the volume filling 
factor f=Vp dNp /dV, where Np stands for the number of nanoparticles and 
Vp=4πa³/3 is the volume of a spherical nanoparticle with radius a. The 

effective refractive index of composed medium reads n = (1-f)nb + fnp 
[22]. Optical indices nb=n0b + δnb(J) and np=n0p + δnp(J), as well as the 
filling factor f=f0 + δf(J) depend on the laser intensity J=(cn0/2π)|Ē|². 
Consequently, the effective index in Eq. (2) is also perturbed n=n0 + 
δn(J), where n0=(1-f0)n0b + f0n0p and δn=(n0p-n0b)δf + (1-f0)δnb + f0δnp. 
The filling factor reads f=f0 exp (-β|Ē|²) where β=|α|/4kBT with 
temperature, T and kB as Boltzmann constant [12,21]. The polarizability 
α of nanoparticles is given by α=3Vpnb²ξ/(4π) where ξ=(n0p²- n0b²)/( n0p² + 
2n0b²). 

    Importance of thermal nonlinear effects modifying laser beam 
dynamics in suspensions of nanoparticles is well recognized [22,27,28]. 
Indeed, the temperature of background liquid (e.g. body water) increases 
absorbing part of radiation energy, hence, the thermal nonlinearity of 
host medium can modify the nonlinear dynamics of soliton in a nonlocal 
way [17,29,30]. The electromagnetic laser waves induced temperature 



 
 
 
 

 
 SELF-ORGANIZED BRIDGE 115 

 

 
 

change obeys the heat transport equation C∂δT/∂t-χ∆δT=μJ where C is 

the heat capacity per unit volume, χ is the thermal conductivity, while the 
coefficient μ characterizes linear absorption losses due to the background 

liquid heating [17]. Such a heat transfer equation reduces to 

χ∆δT = −μJ                       (3)  

under steady state conditions, i.e., when temporal variation in laser 
intensity profile can be neglected [17,27]. Indeed, one of the main 
characteristics of solitons is their high temporal and spatial stability [11-
13,18-20,31,32].  

In order to elucidate experiments that have essentially a nonlocal 
character, we construct, starting from Eqs. (2)-(3), a novel nonlocal 
theoretical model of self-organized soliton-tweezers propagation in 
suspensions of nanoparticles. Assuming the electric field, Ē=Ā(𝑟⊥) exp 
(ik0n0Z), the slowly varying envelop Ā(𝑟⊥) approximation is applied to 
both equations simultaneously. Using paraxial approximation, the 
following set of coupled nonlinear equations is obtained 

𝑖
∂Ē

∂Z
+

∇⊥
2 Ē

2k0n0
+ k₀| n0p − n0b|f0(1 − e−β|Ē|²)Ē − k₀(1 − f0) |

∂nb

∂T
| δTĒ =

0                                 (4)   

and 

∇⊥
2 δT = −

cn0μ

2πχ
|Ē|2.                              (5) 

Besides the propagation and diffraction terms, in Eq. (4) appear the 
exponential focusing term as well as the defocusing one that insure the 
coupling with Eq. (5). In most of liquids, like body water, the thermal 
nonlinearity has a defocusing character ∂nb/∂T<0. Taking into account 

that nanoparticles are expelled from the laser beam, the Rayleigh 
scattering losses are neglected [8, 21]. Eqs. (4)-(5) are rewritten as 

i ∂E/ ∂z + ∇⊥
2 E + (1 − 𝑒𝑥𝑝(−|E|²))E − ΘE = 0           (6) 

and  

∇⊥
2 Θ = −K|E|2 = −K|I|                         (7)  
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using dimensionless variables: the propagation and transverse 
coordinates z=Zk0|n0p-n0b|f0 and r=(2𝑘0

2n0|n0p-n0b|f₀)1/2𝑟⊥, envelop electric 
field E=β1/2Ē, real intensity |I|=|E|2, and generalized thermal index  
Θ=K₁(δT/T), with the coefficient K₁=|n0p-n0b|⁻¹(𝑓0

⁻¹-1)T|∂nb/∂T| and the 

coupling parameter K=K₁K₂ where K₂=μcn0kB/(2π|α|χ𝑘0
2|n0p-n0b|f₀). The 

thermal conductivity of water at T=300 K° is χ=0.6071 K°W/m and 
∂nb/∂T=-10⁻⁴ (K°)-1. 

 

3. Nonlocal variational approach of soliton-tweezers 

Starting from Eqs. (6)-(7) a novel nonlocal variational approach 
adapted to nonlocal experiments, is established [33,34]. The Lagrangian 
density corresponding to Eqs. (6)-(7) reads 

L =
i

2
(

∂Ecc

∂z
E −

∂E

∂z
Ecc) + |∇⊥E|² − (|E|² − 1 + 𝑒𝑥𝑝[−|E|²]) −

|∇⊥Θ|²

2K

+ Θ|E|2 

    (8)  

The appropriate variations of Lagrangian, δL/δEcc=0 and δL/δΘ=0 

yield Euler-Lagrange equations associated to Eqs. (6)-(7). Suitably 
chosen trial functions are optimized. For the laser field envelop the 
natural trial function is a Gaussian [8,16,18-20] 

E = A(z)𝑒𝑥𝑝[−r²/(2R(z)²) + iC(z)r² + iΨ(z)],                               (9) 

where A, R, C, and Ψ are respectively amplitude, beam width, wave front 

curvature and  phase [8,13,16,20]. The trial function for the nonlocal heat 
response of the medium reads 

 Θ = B(z){𝐸𝑖[−r²/ RT(z)²] − 𝑙𝑛[r²/d²]},                   (10) 

where B is the amplitude and RT is the width [33,34]. Here, Ei is the 
exponential integral function. The trial function Θ corresponds to 

radially-symmetric solution of Eq. (7) with zero boundary conditions on 
a circle of radius d>>R. The trial functions are substituted into Eqs. (6)-
(7)  and Lagrangian is averaged over radial coordinate  
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< 𝐿 >= 𝑃 [
𝑑𝜓

𝑑𝑧
+ (

𝑑𝐶

𝑑𝑧
+ 4𝐶2) 𝑅2 +

1

𝑅²
] − 𝑃𝐵𝑙𝑛[

𝑑2𝑒𝛾

𝑅2+𝑅𝑇
2] −

2𝜋𝐵2

𝐾
𝑙𝑛[

𝑑2𝑒𝛾

2𝑅𝑇
2 ]  + 𝜋𝑅2𝐺(𝐴2)                (11)   

with the nonlinearity 

G(A²) = ∫ (
∞

0
1 − A²𝑒𝑥𝑝[−ρ] − 𝑒𝑥𝑝[−A²𝑒𝑥𝑝[−ρ]])dρ = 𝑙𝑛[A²] − A² +

Γ[0, A²] + γ,                      (12) 

where γ≃0.577216 is Euler's constant,  𝛤[𝑠, 𝑤] = ∫ 𝑦𝑠−1𝑒𝑥𝑝(
∞

𝑤
− 𝑦)𝑑𝑦 

is the incomplete gamma function, and 𝜌 = 𝑟2/𝑅2. The beam power is 
P=πA²R². The following set of ordinary differential equations is obtained 
under the condition of zero variation with respect to each of unknown 
functions Q=(A, B, R, RT, C, Ψ) in trial functions, δ<L>/δQ=0  

𝑑𝐴/𝑑𝑧 = −4 𝐴 𝐶,              (13) 

𝐶 = 1/(4𝑅) 𝑑𝑅/𝑑𝑧,                 (14) 

d²R/dz² = 4[1/R³ + B/2R − 1/R(G/A² − 𝐺′)] = F,               (15) 

dΨ/dz = −2/R² + G/A² − 2𝐺′ + B 𝑙𝑛[2R²/(d²𝑒γ+1/2)],        (16) 

where 𝐺′ = 𝜕𝐺(𝐴2)/𝜕𝐴2, along with two algebraic relations B=KP/4π, 
and RT = R. The beam power conservation follows immediately from 
Eqs. (14)-(15). The generalized force, F is given by Eq. (15) [11]. To 
steady state solutions, dA/dz=dR/dz=dC/dz=C=0 of Eqs. (13)-(16) 
correspond soliton-tweezer widths 𝑅± =

2 [𝐴2√𝐾√(𝐺 − 𝐺′𝐴2) ± √(𝐺 − 𝐺′𝐴2)2 −
𝐾𝐴6

2
]

−1

. This equation exists 

providing the coupling parameter K<Kcr≈0.056, as follows from 

expressions 𝐺 − 𝐴2𝐺′ = −1 + 𝑒𝑥𝑝[−𝐴2] + 𝑙𝑛[𝐴2] + Γ[0, A²] + γ and 
𝐺′ = −1 + (1 − 𝑒𝑥𝑝[−𝐴2])/𝐴2. The influence of thermal effects on the 
laser beam propagation depends on the value of the coupling parameter K 
that is very small [17,27].  The relation between power, P and amplitude, 
A, obtained solving Eqs. (13)-(15), is charted in Figure 2 for different 
small parameters K. Indeed, the influence of background heating is 



 
 
 
 
 
118 V. SKARKA AND M. LEKIĊ 

 

 
 

present but small. Full curves correspond to stable steady state soliton-
tweezer solutions, while the dotted ones stand for unstable solutions.  
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     Figure 2 Power, P as a function of amplitude, A for various coupling parameters, K. 
For K=0 (dashed line) there are no heating effects. Full lines correspond to stable 
analytical solutions and dotted lines to unstable ones. Heavy dots are obtained by 
numerical simulations.      

The soliton-tweezer stability is confirmed by numerical simulations 
represented by heavy dots in Figure 2. Without heating effects (K=0), the 
system of two coupled Eqs. (6)-(7) reduces to the one higher order NSLE 
corresponding to the Eq. (6) without coupling linear term. Such a case is 
charted in in Figure 2 by dashed strait line.  

The potential, U, shown in Figure 3, is obtained integrating the 
generalized force F from Eq. (15)  

 U = −∫ F(R)dR =
2

R2
+

2πR2

P
(Γ [0,

P

πR2
] + 𝑙𝑛 [

Peγ

πR2
]) − 2 −

KP𝑙𝑛R2

4π
.   (17)  

Using the analogy with a bullet in a potential well, a deeper physical 
understanding of "light bullet" dynamics around equilibrium width, Req, 
can be acquired [13,16,20].  Indeed, dynamically stable soliton-tweezers 
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are self-trapped in minima of U-potential well corresponding to the novel 
analytical stability criterion 

(
∂2U

∂R2)
R=Req 

=
8

R2 (
2

R2 +
KP

8π
−

πR2

P
+ (1 +

πR2

P
) 𝑒𝑥𝑝[−

P

πR2])R=Req 
> 0 .  

(18) 

 

Figure 3 Stable steady state soliton-tweezer solutions are in the bottom of U-potential 
well for small widths, R, and self-trapping powers, P.  

Therefore, the stable propagation of soliton-tweezer is analytically 
established for full line intervals of self-trapping in Figure 2 
corresponding to the bottom of potential well in Figure 3. 

In experiments only global self-focusing and self-defocusing effects 
are measured [32]. Therefore, the exponential of Eq. (6) is formally 
expanded and the dominating self-focusing cubic nonlinearity term is 
weighted by the coefficient σ that takes into account the formal sum of 
all smaller positive higher-order self-focusing terms in the expansion. 
Similarly, the dominating negative, self-defocusing quintic nonlinearity 
is weighted by the coefficient ν regrouping all smaller negative terms of 
higher order 
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 i ∂E/ ∂z + ∇⊥
2 E + (σ|I| − ν|I|²)E − ΘE = 0.          (19) 

The established nonlocal variational model of self-organized soliton-
tweezer propagation in nanosuspensions has to be confirmed by 
experiments.  

 

4. Experimentally self-generated soliton-tweezers confirmed by 
numerical simulations 

In order to establish soliton-tweezing of nanoparticles in body water, 
the prerequisites are synergetic multidisciplinary theoretical, numerical 
and experimental investigations of the suspension of nanoparticles in 
pure water [8,35-39]. Here we consider, as a representative example, the 
continuous laser interaction with negatively polarized nanoparticles (nb > 
np) in pure water suspension. Without loss of generality, we investigate 
the self-organized propagation of a near infrared laser beam of wave 
length λ0=727 nm in u-cuvette with 100 mL pure water suspension of 
0.05 mg gold nanoshells. Such hybrids are surface plasmon resonant 
nanoparticles consisting of a nanoscale silica core surrounded by an 
ultra-thin gold shell [22,37,39,40]. In experiments we use gold nanoshells 
of 240 nm diameter that have a strong plasmon resonance at wave length 
λ0=980 nm [37,41]. In laser light of lower wave length λ0=727 nm, 
hence, higher frequency, these nanoparticles are negatively polarized 
[22]. Their capping agent is the polyethylene glycol (PEG) ligand that is 
covalently bound to the particles surface [37,42]. It is a safe polyether 
compound consisting of repeating units of ethylene oxide. The PEG is 
used as a stealth coating in biomedical applications in order to evade the 
body immune system and to reduce non-specific binding [37,42]. Its 
surface functionality disperses very well in water increasing 
biocompatibility for in-vivo and in-vitro  toxicology experiments, 
radionanomedicine, nanobiodiagnostic, as well as photothermal 
applications [5,10,35,37-42]. Such a surface is very stable in buffers 
containing high salt concentrations found in culture media and body 
water like blood.  

The established nonlocal variational model of soliton-tweezer self-
trapped propagation controlling collectively tweezed nanoparticles in 
plasmonic suspensions is confirmed by experiments using appropriate 
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setup with Mira 900 laser of wavelength λ0=727 nm in continuous 
regime. The spontaneous self-collimation of laser beam due to its self-
trapped propagation in 20 cm long optically clear u-cuvette filled with 
pure water suspension of collectively tweezed gold nanoshells, is shown 
in Figure 4a. Corresponding camera captured output beam intensity 
profile is charted in Fig. 4b. The constant beam width during the 
propagation is the signature of stable soliton-tweezer self-trapping. 
Indeed, the beam width conservation implies the zero wave front 
curvature that is the main property of solitons [12,18,31,32]. In contrast 
to usual diffracting laser beams, the nonlinear soliton-tweezer is 
spontaneously self-collimated due to the compensation of self-defocusing 
by the self-focusing tweezing effect [8,13,16,18-20,31,32]. Therefore, 
experiments  

Figure 4 Matching of experimental and numerical results of soliton-tweezer propagation in u-
cuvette of 20 cm. a Spontaneously self-trapped and self-collimated soliton-tweezer propagating 
through plasmonic suspension of collectively tweezed nanoshells. f Dots with uncertainty bars 
represent measured soliton-tweezer output intensities for increasing input intensities. In insert, 
their third order polynomial fit determines positive numerical values of coefficients η and σ in 
front of intensities I, and I2 of Eq. (20), as well as the negative value of ν in front of I3. b The 
soliton-tweezer output profile, camera captured in experiment, is matching numerical profiles that 
stay same after propagations of (c) z=1000, (d) z=20000, and (e) z=30000 arbitrary unit. The 
color scale is common. 
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confirm that soliton-tweezers stay in dynamical equilibrium in the bottom 
of the U-potential well in Figure 3, as predicted by the established 
analytical stability criterion, Eq. (18).  Dots in Figure 4f correspond to 
measured values of output intensities, Iout as functions of gradually 
increasing input intensities, Iin. Their third order polynomial fit gives ηI + 
σI2 - νI3 with concrete values of coefficients in insert of Figure 4f. The 
quadratic intensity term, σI2 corresponding to the concave part of curve 
for small intensities, is focusing, like the self-focusing term in usual 
nonlinear Schrödinger equation (NLSE) for electric field, E. The negative 
cubic intensity term, -νI3 corresponding to the convex part of curve for 
big intensities, is defocusing, like the negative self-defocusing term in 
NLSE. The linear intensity term, ηI does not have a counterpart in 
ordinary local NLSE. It corresponds to the linear term in Eq. (19) that 
couple this equation with heat equation Eq. (7). As can be seen from 
Figure 2 the parameter K is very small.  As a consequence, Eq. (7) can be 
formally integrated contributing a coefficient η to this coupling term in 
Eq. (19). Therefore, the nonlocal influence of the heat can be included in 
the linear term of Eq. (19) rewriting it as ηE in our model equation. 
Therefore, the coefficient η as well as coefficients σ and ν have to be 
determined from experiments by fitting measured input-output intensity 
I=E2 curve, as in Figure 4f. Usually in theoretical approaches, laser 
electromagnetic wave is represented only by the electric field E, taking 
into account that the corresponding magnetic field is proportional to its 
complementary electric radiation E [6,12]. However, the experimental 
data force us to take into account intensity I=E2 if we want to establish a 
realistic theoretical description of laser electromagnetic field that 
necessary includes complementary magnetic field. Indeed, the self-
generation of laser electromagnetic light is the consequence of the 
universal principle of dialectic: the cooperation of electric (yang) and 
magnetic (yin) fields. As a consequence, rewritten Eq. (19) for complex 
electric field E is multiplied by the same E in order to model the 
experimentally measured complex intensity I=E2, giving the synergetic 
soliton-tweezer equation  

i ∂I/ ∂z + ε∇⊥
2 I + ηI + (σ|I| − ν|I|²)I = 0.           (20) 

 
This equation model the influence of heat nonlocality, self-focusing, and 
self-defocusing in experiment, respectively, through the measured 
coefficient η, σ, and ν. Both experimental results and theoretical model 
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confirm the solitonic nature of soliton-tweezers. Consequently, self-
focusing balances self-defocusing and diffraction, implying ε= σ-ν. 
Therefore, the coefficient ε is also determined from the same experiment. 
This novel synergetic soliton-tweezer complex intensity equation 
(STCIE) establishes the missing bridge between nonlocal experiments 
and their direct theoretical description.   

The output intensity profile after a propagation of z=1000 arbitrary units 
(a.u.), is obtained in Figure 4c as a numerical solution of STCIE with 
experimentally measured coupling, self-defocusing and tweezing self-
focusing coefficients. It coincides with numerical profiles in Figures 4d 
and 4e after very long propagations of z=20000 a.u. and 30000 a.u. This 
is numerical confirmation of a spontaneous self-collimation of soliton-
tweezer with conserved width. The striking similarity of experimental 
and numerical profiles in Figures 4b-4e helps to establish the feasibility 
and numerical predictability of soliton-tweezers based on the synergy of 
the multidisciplinary theoretical, experimental, and numerical 
approaches. 

Soliton-tweezer robustness is also confirmed in Figures 5 by a stable 
behavior of its width, R, complex intensity, I, and power, P during a 
30,000 a.u. long numerical evolution. The light breathing is the signature 
of soliton-tweezer dynamic stabilization in the bottom of U-potential well 
of Figure 3, through collective tweezing of nanoparticles that have 
inertia. 

In order to see the beam profile in the center of u-cuvette of 20 cm, the 
same experiment is repeated with the u-cuvette of 10 cm. Obtained 

spontaneously self-collimated soliton-tweezer is camera captured in 

Figures 6a-6b. It has the same width as the one in Figs. 4a-4b. Numerical 
values of coefficients in Eq. (20) are extracted from the third order 
polynomial fit of experimentally obtained input-output dots in insert of 
Fig. 6f. STCIE with these values is solved numerically yielding identical 
soliton-tweezer output profiles after z=1000 a.u. (Figure 6c), z=20000 
a.u. (Fig. 6d) and z=30000 a.u. (Fig. 6e) numerical propagations. These 
profiles are matching those of the 20 cm u-cuvette in Figures 4c-4e, 
although the fitting coefficients for STCIE in inserts of Figs. 4f and 6f 
are quite different. Essential is that both curves start as concave causing 
tweezing self-focusing with positive I2 and finish as convex inducing 
self-defocusing with negative I3, confirming the feasibility of soliton-
tweezers. 
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Figure 5. Numerical propagation of STCIE with fitting parameters of Figure 4f, 
during z=30,000 a.u. shows stable and robust regular breathing of soliton-tweezer 
complex intensity, I power, P, and beam width, R (with two different resolutions)  in 
the dynamical equilibrium in the bottom of U-potential well of Figure 3. 

Coefficients coming from insert of Figure 6f are introduced in STCIE 
in order to obtain stable numerical evolutions of width, R, complex 
intensity, I, and power, P during more than z=30,000 a.u. (see Figure 7). 
Their behavior  
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Figure 6 Spontaneously self-collimated propagation of soliton-tweezer in 10 cm u-
cuvette. a The camera captured beam is the same as the one in 20 cm u-cuvette. b Its 
experimental output profile coincides with those obtained by numerical propagation of 
Eq. (20) after (c) z=1000, (d) z=20000, and (e) z=30000  a.u., as well as with those of 
Fig. 4a-4e. The color scale is common for both experiments. f Measured soliton-tweezer 
output intensities for increasing input ones are represented by dots with uncertainty 
bars. In insert, their third order polynomial fit gives numerical values of coefficients in 
front of linear and nonlinear intensities in Eq. (20). 

is similar to the one in Figure 5, confirm robustness of soliton-tweezer 
and its predictability important for medical applications. 

Therefore, identical experimental and numerical results of self-trapping 
in 
both u-cuvettes and in theoretical model, charted in Figures 2-7, confirm 
the feasibility, stability, robustness, and predictability of soliton-tweezer 
controls of collectively tweezed nanoparticles in plasmonic suspensions.  

    Behavior of soliton-tweezer self-trapped in suspension of positively 
polarized nanoparticles is investigated using femtosecond laser of 
wavelength λ0=1037 nm. In experiments we use gold nanoshells of 240 
nm diameter that have a strong plasmon resonance at wave length λ0=980 

 

                            f
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nm. Indeed, in laser light of higher wave length λ0=1037 nm, these 
nanoparticles are positively polarized [22]. The experiment is of the same 
conception with the same cuvette of 10 cm as in previous experiments, 
but the soliton-tweezer is invisible at this wavelength. However, it is 
possible to investigate the  

 

Figure 7. Soliton-tweezer stability in 10 cm cuvette is confirmed numerically. 
Numerical values of coefficients, obtained by fitting experimental data, are included in 
Eq. (20), in order to perform 30,000 steps long stable numerical propagation of complex 
intensity, I, power, P, and width, R, resulting in their conservation that confirm soliton-
tweezer stability. 

structure of soliton-tweezer and its propagation using our innovative 
approach. In Figure 8 are charted data of measured output complex 
intensities as function of increasing input intensities, in form of dots. 
Their third order polynomial fit gives ηI + σI2 - νI3 in inset of Figure 8 
with concrete values of coefficients η, σ, and ν. As in previous examples, 
the positive sign of the quadratic self-focusing term implies that the first 
part of the curve for the smaller intensities is parabolic, i.e., convex. The 
second part of the curve for higher intensities is concave due to negative 
sign of the cubic self-defocusing term. We see here the collaboration of 
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antagonist effects of self-focusing (yang) and self-defocusing (yin) that is 
responsible for the self-organization of stable soliton-tweezer in Figure 8. 
We have intention to investigate the universal character of convex-
concave curves that appear in the increasing part of Gaussian and 
sinusoid too. 

    Obtained values of coefficients η, σ, and ν are introduced in our 
innovative      STCIE, Eq. (20). This equation is then numerically 
propagated from z= 0 a.u. till z=90520 a.u. (see Figure 9). Such an 
exceptionally long propagation has for purpose to demonstrate the perfect 
stability and robustness of soliton- 

 
 
Figure 8 Soliton-tweezer self-trapped and self-collimated in suspension of positively 

polarized nanoparticles is investigated using femtosecond laser of wavelength λ0=1037 
nm. Heavy dots output intensities are charted in function of increasing input intensities. 

tweezer. This is due to the compensation of all self-defocusing effects by 
self-focusing nonlinearity induced by collective modification of 
nanoshells density following the soliton-tweezer profile. This 
compensation in STCIE comes from the synergetic yin-yang self-
cooperation of theory and experiments making the bridge between them. 
Although STCIE is local in space as any nonlinear partial differential 
equation, it includes, in its linear term, the essence of nonlocality through 
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the coefficient η that take formally  into account the coupling with heat 
equation. The value of η comes from experimental measurements. 
Indeed, our synergetic STCIE is a hybrid equation with values of 
coefficient σ in self-focusing term and coefficient ν in self-defocusing 
term, come directly from the measurements too. In such a way, a realistic 
theoretical description of the experiment is established for the first time. 

    The stability and robustness as well as the predictability are 
demonstrated in figure 10 where the soliton-tweezer intensity, I, power, 
P, and width, R are constant. Nearly imperceptible breathing of intensity 
is seen in Figure 10 only with very big resolution of 30 a.u. This 
breathing appears in Figure 9 as the transformation of dome soliton-
tweezer into millstone one. 
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Figure 9 Exceptionally long numerical propagation of STCIE with fitting parameters of 
Figure 8, charted for z=0, 20, , 40, 50, 100, 300, 400, 430,  440, 450, 460, 1600, 1750, 
2690, 2700, 2710, 3250, 5000, 8000, 10000, 15000, 16900, 17370, 17880, 18120, 
18400, 18420, 21280,21800, 24450, 27000, 32550, 33000, 46400, 49960, 60500, 
90510, and z=90,520 a.u. shows stable and robust regular breathing of soliton-tweezer 
consisting of the change of its shape from millstone to dome and vice versa.  
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5. Conclusions 

As demonstrated, the self-trapped and self-collimated soliton-tweezer is 
perfectly stable in water suspensions of both positively and negatively 
polarized nanoparticles. Therefore, we established the feasibility of self-
organized soliton-tweezers controlling collectively nanoshells in water 
suspension using multidisciplinary theoretical, experimental, and 
numerical results obtained synergistically. The stability, predictability 
and robustness of soliton-tweezers suggest the possibility of safe medical 
applications, e.g.  

 
Figure 10 Numerical propagation of STCIE with fitting parameters of Figure 4f, 

during z=30,000 a.u. shows stable and robust regular breathing of soliton-tweezer 
complex intensity, I power, P, and beam width, R (with two different resolutions)  in 
the dynamical equilibrium in the bottom of U-potential well of Figure 3. 

selective inactivation of viruses, bacteria or cancer cells in body water 
without damaging healthy tissues [4,10,35-41,43,44]. Indeed, an efficient 
and safe inactivation of human coronaviruses by far-UVC light (222 nm) 

is recently demonstrated [45]. The fact that both golden nanoshells and 
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viruses, despite their fundamental difference, belong to the same category 
of nanoparticles due to their similar size, encourage us to suggest 
experimental studies on the possibility to inactivate SARS-CoV-2 in 
blood using our novel soliton-tweezers. Indeed, the presence of SARS-
CoV-2 was detected recently in human blood [46]. The size of 
nanoparticles determines the plasmon resonance frequencies that are 
crucial for efficient applications of soliton-tweezers. The glycoprotein 
membrane of SARS-CoV-2 is rich of electric dipoles susceptible to 
generate some surface resonances [48,49]. In soliton-tweezer field, all 
nanoparticles, including virus-nanoparticles, with higher resonant 
frequency than laser one, behave as positively polarized as in Figures 8-
10. In contrary, if their resonant frequency is lower than soliton-tweezer 
one, they are effectively negatively polarized as in Figures 4-7. If SARS-
CoV-2 in blood filling u-cuvette is positively polarized, it would be 
squeezed paraxially in a soliton-tweezer. Consequently, it may be 
supposed that in the central part of soliton-tweezer field, viruses would 
be inactivated suffering simultaneously enhanced heat and resonant 
vibrations, [43-45]. The inactivation temperature of about 60°C can be 
easily achieved increasing the soliton-tweezer intensity (see Figures 4-
10). Therefore, we suggest to incorporate our u-cuvette in extracorporeal 
membrane oxygenation system (ECMOS) used for medical treatment of 
SARS-CoV-2 by blood extraction from human body in order to provide 
input of oxygen and output of carbon dioxide. In order to collect all such 
positively polarized SARS-CoV-2, the soliton-tweezer width has to be 
enlarged in order to match the radius of redesigned u-cuvettes in 
ECMOS. Negatively polarized viruses are expelled out of beam and may 
be stick on the u-cuvette wall by monoclonal antibodies that have the 
high level capacity to bind them [47-49]. In such a way viruses are 
mechanically removed from the blood without need of their inactivation. 
SARS-CoV and MERS-CoV monoclonal antibodies can be used for 
binding SARS-CoV-2 in absence of specific antibodies [48,49]. Taking 
into account that the blood processing in ECMOS is in vitro, i.e., out of 
human body, easily produced mouse monoclonal antibodies can be used 
too for binding SARS-CoV-2 without danger of inducing body 
immunologic reactions [47-49].  

    We stress that it is not necessary to know the resonant frequencies of 
SARS-CoV-2 in order to purify the blood efficiently. Indeed, viruses 
with resonant frequencies higher than the frequency of soliton-tweezer 
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are attracted toward its central axe and inactivated there by high 
intensity, heat, and vibrations [43-45]. Simultaneously, viruses with 
resonant frequencies lower than soliton-tweezer one, are expelled toward 
the wall where they stay bind by monoclonal antibodies [47-49]. Notice 
that viruses with the refracting index larger that blood one, are negatively 
polarized if their resonant frequency is below soliton-tweezer one [22].  

    Resonant frequencies of viruses, related to their small size, are much 
higher than those of other nanoparticles in body water [43-49]. This is 
crucial for selective and secure medical applications. In contrast to the 
Kerr solitons generated above an intensity threshold, soliton-tweezers 
always control nanoparticles concentration independently of their 
intensity [8,13,18]. The lack of the threshold allows use of very low 
intensity soliton-tweezers that do not affect other nanoparticles in blood 
increasing safety in medical applications [45]. However, thorough 
experimental studies involving SARS-CoV-2 are needed in order to 
confirm our hypothesis. 

    Soliton-tweezers exist in nature in the form of vortices as e.g. tornado. 
This violent meteorological event is tweezing air and water 
nanoparticles, hence, can be modeled as soliton–tweezer. Indeed, we 
generated, for the first time up to our knowledge, a self-trapped vortex 
soliton-tweezer in 65 cm air column, using simultaneously red, blue, and 
green lasers. Such a multicolor combination of lasers gives a novel white 
spot. Tornado and laboratory soliton-tweezer are both big solitary waves 
that may be considered as concrete examples of rotating rogue waves 
(see Figure 11). The similarity of camera captions of tornado and our 
soliton-tweezer encourage us to suggest safe experimental studies of 
tornado on the model of laboratory soliton-tweezer. 
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Figure 11 Vortex soliton-tweezer is realized in 65 cm of air using red, green, and blue 
lasers simultaneously, giving white spot. It is similar to the tornado captured by drone 
camera. 
 
  In conclusion, the innovative is threefold in establishing direct 
multidisciplinary synergetic bridge between theory and experiments via 
numerical simulations. 1. We established an original theoretical model of 
self-trapping of soliton-tweezers in suspensions of nanoparticles by 
extending variational approach to nonlocal systems. 2. Soliton gradient 
forces tweeze nanoparticles collectively inducing density gradient that 
produces, in turn, self-focusing and self-trapping of soliton-tweezer in a 
stable dynamical equilibrium that we realized experimentally in very 
long cuvettes. 3. Using synergy between our experimental and theoretical 
results, we established a direct description of soliton-tweezer self-
trapping by an innovating partial differential equation for complex 
intensity that includes experimentally measured coefficients. Numerical 
simulations of this equation together with self-collimation experiments confirm 
feasibility, stability, robustness, and predictability of soliton-tweezers. 
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ABSTRACT 
 

     In the present article we investigate the nonlinear dynamics of 
microtubules, the basic components of the eukaryotic cytoskeleton, and 
rely on the known general model. A crucial interaction among 
constitutive particles is modelled using W-potential. Three kinds of this 
potential are studied, symmetrical and two non-symmetrical. We 
demonstrate an advantage of the latter ones. 

 
 

1. Introduction 
 
There are two kinds of cells. These are eukaryotic, having a membrane-
bound nucleus, and much simpler prokaryotic cells, without the nucleus. 
In the eukaryotes, an intracellular protein filament network exists. 
Microtubules (MTs), studied in this article, are the basic components of 
this cytoskeleton. They play essential roles in the shaping and 
maintenance of cells and in cell division. Also, MTs represent a traffic 
network for motor proteins moving along them. 
     Information about their structure and function can be found in many 
references [1-3]. Here, we mention some basic pieces of information 
only. MT is a long hollow cylinder spreading between the nucleus and 
cell membrane. Its surface is usually formed of 13 long structures called 
protofilaments (PFs), representing a series of heterodimers, as shown in 
Fig. 1. A key point is that the heterodimer, or dimer for short, is an 
electric dipole. This means that MT behaves as ferroelectric [4], which is 
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crucial for many models of MTs. In this paper, we rely on the so-called 
general model (GM) [5]. 
     The lengths of MTs vary from a few hundred nanometers up to meters 
in long nerve axons [6]. For most of the models, a dimer is a constitutive 
unit, which means that its internal structure is not taken into 
consideration. Its mass and length are kg108.1 22m  [4] and nm8l  
[4,7,8], respectively. The longitudinal, tangential, and radial components 
of the electric dipole moment are Cm1013.1 27zp , 

Cm1066.0 27p , and Cm1057.5 27rp , respectively [9]. 

Hence, zp  is in the direction of MT. 
 
 

 
 

Fig. 1. Microtubule 
 
 

     In Section 2, we very briefly explain the used model. For one of the 
interactions between the dimers, we use W-potential energy, or potential 
for short. We study three types of them and obtain three dynamic 
equations of motion. These are crucial equations, solved in Section 3, 
while Section 4 is devoted to some concluding remarks. 

 
2. W-potential within the general model of MTs 

 
It was mentioned above that MT behaves like a ferroelectrics. Based on 
this fact is the first model [4] in a series of models describing MT 
nonlinear dynamics. As the used coordinate is a longitudinal one, the 
model belongs to the group of longitudinal models, as well as its 
improved ancestor [10]. There are a few degrees of freedom for each 
dimer, but the essential is the angular one. Hence, angular models 
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represent a crucial group of models describing MT dynamics. The first in 
this series is the so-called φ-model [11], a perhaps somewhat naive but 
rather important step in the evolution of the models. The next one is the 
general model (GM), mentioned above [5], which we rely on in this 
paper. We conclude the series with the model introduced recently [12]. 
This two-component angular model has been under active investigation 
and is not relevant for this work. 
     A starting point for all these models is Hamiltonian. For GM, it is [5] 
 

              
22

1 ( ) cos
2 2n n n n n

n

I k
H W pE    

 
     

 
 ,                    

(1) 
 
where I  is a moment of inertia of the single dimer, k  is an inter-dimer 
stiffness parameter, 0E  is the intrinsic electric field, and 0p  stands 
for electric dipole moment. Notice that E  is the internal electric field, 
which means that a particular dimer exists in the field of all other dimers. 
The angle n  describes the dimer`s oscillation and n is its position. We 

recognize the kinetic and potential energies of the interaction of the two 
neighbouring dimers belonging to the same PF. A term ( )W   represents 
the interaction of a single dimer with all other ones that do not belong to 
the same PF. It is called W-potential as it looks like a letter W, which 
will be clear later on. The very last term is coming from the fact that the 
electric dipole is in the field of all other ones. For this paper, the most 
important is the W-potential. We study the following three cases: 
 
Case 1. W-potential is a symmetric function: 
 

                42
1 42 nn

BA
W   ,    0A ,    0B  .                               (2) 

 
Case 2. W-potential is a non-symmetric function: 
 

nnn C
BA

W  
42

2 42
.                                                 (3) 
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Case 3. W-potential is a non-symmetric function: 
 

342
3 342 nnn

DBA
W   .                                              (4) 

 
     We use Hamilton’s dynamical equation nn HI   , a 

continuum approximation ( ) ( , )n t x t  , series expansion of the cosine 

term, as well as 2
2

2

1 2

1
l

x
l

xn











  [10], and obtain the 

following dynamical equations of motion: 
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Case 3.   
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where   is a viscosity parameter. Hence, we obtained partial differential 
equations. It is well known that, for a given wave equation, a travelling 
wave    is a solution that depends upon x  and t  only through a 
unified variable 
 
                                                tx   ,                                                 
(8) 
 
where   and   are constants. According to Eqs. (5)-(8), we 
straightforwardly obtain ordinary differential equations (ODE): 
 
Case 1.                     03   ,                                      (9) 
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Case 2.                     03   ,                            (10) 
 
Case 3.                     023   ,                        (11) 
 
where, 
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and d d    . Experimental values of the involved parameters do not 

exist but our estimations strongly suggest pEA   and 6pEB   [5], 
which was used above.   
     Let us point out the great importance of the parameter  . From Eqs. 
(1), (5)-(7), and (12), we conclude that its negative sign means that the 
elastic term is larger than the inertial one, and vice versa. Also, Eq. (12) 
can be written as 
 

   
pEA

cvI

pEA

IklI

pEA

klI









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


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)()//( 2222222222 
 ,              (14) 

 
where v  is the velocity of the solitary wave, while c  is the speed of 
sound. This means that the sign of   shows if the wave is subsonic or 
supersonic. 
 
3. Solutions of equations (9) – (11)  
 
There are many mathematical procedures for solving Eqs. (9)-(11). One 
of the simplest is a procedure that we call the tangent hyperbolic function 
method (THFM). According to THFM, we expect the solution   as [13] 
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                            

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i
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i
i baa

1
0 ,                                       (15) 

 
where   is the solution of the well-known Riccati equation 
 
                                       2 b ,                                                 (16) 
 
and the parameters 0a , ia , ib , and b  should be determined. A solution 

of Eq. (16) depends on b  [10,13]. The one having physical sense is 
 

                                 bb  tanh ,                                      (17) 
 
which holds for 0b . The highest exponents are 2M  and M3 , 
coming from    and 3 , respectively. This means that 1M  in Eq. 

(15). Also, we set 0ib  because we are not interested in diverging 

solutions in this work, and Eq. (15) becomes. 
 

 aa0 .                                                 (18) 

 
According to Eqs. (9)-(11), (16), and (18), we obtain the expression 
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which is satisfied if all the coefficients iK  are simultaneously equal to 

zero. Of course, for 01 b , the system is simplified. In what follows, we 
solve ODEs for all three cases, i.e., Eqs. (9)-(11).  
 
Case 1.      
      
     This case was solved in Ref. [5], where the model we rely on was 
introduced. Using Mathematica, we easily obtain the following two 
solutions: 
 

2
1)(
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3

2)( 
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216
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which yields  
 

         









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The functions )(

1
  and )(

1
  are kink and antikink solitons, respectively, 

or kinks for short. They are shown in Fig. 2 for 1 . 
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Fig. 2. Kink solitons )(
1
  (blue) and )(

1
  (red) for 1  

 
 

     If viscosity is neglected, that is for 0  , the solution of Eq. (9) is 
 

 )tanh(10 a  ,         022  a ,                           (22) 

 
where a  is an arbitrary constant introduced in Eq. (18). This function is 
similar to the one shown in Fig. 2 but it goes from -1 to 1, or from 1 to -1, 
depending on a sign of a . 
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     To obtain Eqs. (20)-(22), pEA   and 6pEB   were assumed, as 

mentioned above. The cases  0
6

)( 









pE
BpEA , pEA   and 

6
pE

B  , and 6pEB   were studied in Ref. [5]. No solution having 

physical sense, relevant for this article, was obtained. 
 

Case 2. 
 
     Eq. (10) exists in Ref. [10], even though different models were 
established. Solutions, corresponding to Eq. (20), are [10] 
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Three real solutions of Eq. (23) are [10] 
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where 
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Figure 3 shows how the functions ia0  depend on  . We notice that 

312
01 a . Also, according to Eqs. (24) and (25), we see that 

  31003 a . This means that three real roots of Eq. (23) exist for 

0  , as 0b . There is one real solution for 0   [10]. However, 
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the requirement 0   is nothing but 13 2
0 a . This case corresponds to 

the positive b , which brings about the diverging solution [10]. 
     The finite solutions, i.e., the functions i2 , are determined by Eqs. 

(17), (18), and (23)-(25). They are 
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shown in Fig. 4. 
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Fig. 3. The parameters ia0  as functions of   
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Fig. 4. Kink solitons 21  (blue), 22  (red), and 23  (black) for 1  

and 3.0  
 

     According to Eqs. (13) and (23), we see that the approximation 0   

yields to 00 a  and 0  and, consequently, to the symmetric 

potential. 
 
Case 3. 

It was explained above that Eq. (19) gives a system of equations from 
which we obtain values of the parameters determining the function  . 

As we study the case 01  aa  and 01 b , the coefficients 
1K , 

2K , 

and 
3K  disappear. Hence, we use Eqs. (11), (16), and (18) and obtain 

Eq. (19) for this particular case. The coefficients for 3 , 2 , 1 , and 

10   respectively bring about the following system 
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According to Eq. (27), we obtain 2/2a , like in the previous two 
cases, and the three solutions for 0a , a , and b . These solutions are                                    
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where 
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     It may be useful to keep in mind that the different analytical 
procedures, or different kinds of software, can bring about the 
expressions for the parameter that looks different from those given by 
Eqs. (29) and (30). For example, the alternative expressions for )3(b  
could be 
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Therefore, all the three expressions are identical, which might not be 
obvious at first glance. 
     The final solutions, i.e., the functions )1(

3 , )2(
3 , and )3(

3 , can be 

obtained according to Eqs. (17), (18), and (28)-(31). They are  
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where 

 

422 0
2  K .                                        (37) 

 
They are shown in Fig. 5 for 3.0 .  

 
4. Discussions and future research 

 
Each of the three potentials given by Eqs. (2)-(4) has two minima and 
one maximum. In terms of the functions  , we can talk of the right and 

left minima, and of the maximum, denoted as R , L , and M , 
respectively. Let us compare Figs. 2 and 4. The solutions in Fig. 2 
represent the transitions MR    (blue) and ML    (red). Both 

transitions can be seen in Fig. 4, but there is one more. This is LR    
(black), representing a transition from a deeper minimum to a shallower 
one. An obvious conclusion is that the non-symmetric potential 2W  is 
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better than the symmetric one. Also, the same conclusion is suggested by 
the geometry of MTs.  
     The potentials 2W  and 3W  bring about Figs. 4 and 5. These figures are 

basically of the same value, i.e., describe all three transitions. This means 
that it is difficult to state which potential is better for MT modelling. In 
the case of 3W , the transition LR    goes slowly in comparison to 

2W  (black lines), but this depends on the values of the parameters   and 

 . This might mean that 3W  is better but we are not ready for any 

suggestions without further research. We should notice that 0M   in 

cases 1W  and 3W . This indicates that the unstable orientations of the 

dimers are exactly in the direction of PF. Unfortunately, the orientation 
of the dimers has not been experimentally determined yet. We can state 
that the potentials 2W  and 3W  are more convenient for MT modelling 

than the symmetric one. This issue should be studied within a new model 
[12]. 
     The equations (5)-(7) were solved using the continuum 
approximation. The question of whether MT is a discrete or continuum 
system was studied in Ref. [14].  
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ABSTRACT 
 

In this paper the possibilities of modelling the steel fibre reinforced 
concrete (SFRC) in ANSYS software are explored in detail. Several available 
material models are analysed, and their advantages and shortcomings in 
describing the SFRC behaviour are discussed. Since it was shown that none of 
the existing material models available in ANSYS was able to produce 
satisfactory results, a novel modelling approach was proposed, which combined 
several individual material models in order to build on their strengths and 
overcome their disadvantages. All the models were assessed against the 
experiment results found in literature. The analysis showed that not even the 
novel modelling approach was able to simulate SFRC in all its complexity and 
possible improvements of the presented novel approach which would lead to 
more reliable results are discussed. Finally, further research and some other 
software alternatives are proposed. 

 
 

1. Introduction 
 
There are two types of microreinforced concrete – Microreinforced 
concrete in a specific sense, where the concrete element is reinforced by 
some highly ductile strips or ribbons (Figure 1.a) [1], and the fibre 
reinforced concrete, where the concrete matrix is reinforced by many 
relatively short and thin fibres randomly oriented, but homogeneously 
dispersed throughout the matrix (Figure 1.b) [2]. Fibres can be of 
different shapes and sizes and made from different materials, and the 
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most commonly used ones are the steel or glass fibres, usually with 
hooked ends [3-6].  

a) b) c) 

 
Figure 1. Microreinforced concrete. Concrete reinforced a) by composite strips 
[1], and b) by steel fibres [2]. c) Stress-strain diagram for conventional concrete 
(green line) and for steel fibre reinforced concrete (red line) 
In this paper, the Steel Fibre Reinforced Concrete (SFRC) will be of 
main interest. Adding ductile fibres to the otherwise brittle concrete 
matrix improves the overall strength, durability and toughness of the 
concrete, but the main improvement lies in its ductility [7,8], which can 
be readily observed by comparing characteristic stress-strain diagrams 
for conventional, plain concrete, and the fibre reinforced one, Figure 1c 
[2].  
Fibre reinforced concrete is a construction material that exhibits highly 
nonlinear behaviour, even more so than the conventional concrete. This 
makes it very hard to model it numerically, and there is no one universal 
way of modelling it, but rather many different approaches can be found 
in the literature. The simplest and the most widely used approach is to 
model the SFRC as a homogeneous material [9-12]. However, although 
computationally very effective, it is very hard to capture and adequately 
describe all the nonlinear effects that occur in this composite material. 
The other approach consists in modelling the concrete matrix as a 
homogeneous material, and to model the added fibres discretely, while 
defining the appropriate interaction between these two phases of the 
material [13-15]. This approach produces a more precise model and it 
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can handle the nonlinearities better, but it requires the use of the 
Extended Finite Element Method (XFEM) and is computationally much 
more expansive. The approach next in model complexity is the 
Multiscale modelling [16-19], where several numerical models are 
produced, modelling the elements at different length scales and 
calculating the material characteristics for each scale on the model of the 
one scale below, all the way down to atoms. This approach can produce 
very accurate results, it requires enormous computational power which 
makes it suitable for in-depth research of material behaviour, but renders 
it inapplicable in everyday engineering practice. There are some even 
more complex modelling approaches involving peridynamics and 
molecular dynamics [20, 21], but they exceed the scope of this survey. 
Figure 2 shows examples of the three modelling approaches described 
above. In this paper, the most basic approach is considered, since it is the 
most commonly used one in practice and most pieces of commercial 
software are limited to this approach. Moreover, the aim of this paper is 
to explore the possibilities of using the ANSYS commercial FEM 
software for modelling the SFRC material.  

a) b) c) 

 
Figure 3. Different SFRC modelling approaches: a) as a homogeneous material, 
b) homogeneous matrix and discrete fibres [15], and c) multiscale modelling 
[16] 
However, as it will shortly become apparent, this software, although very 
sophisticated, appears to be incapable to produce a SFRC model with a 
satisfactory accuracy by any of the predefined means and procedures 
provided within the software. Therefore, the second part of this paper 
presents a novel modelling approach that overcomes the limitations of 
material models provided in the software. 
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2. Modelling the SFRC with material models available in ANSYS 

 
In ANSYS there are several different material models provided that can 
be readily used to model concrete. However, although accurate enough 
when modelling conventional concrete, each of them possesses some 
major drawbacks and disadvantages when used for SFRC modelling. In 
the following text all these standard models provided in ANSYS will be 
presented and their shortcomings when modelling SFRC will be 
discussed. 
 
CONCRETE material model  
The conventional concrete is much more investigated than the SFRC and, 
although with a quite nonlinear behaviour as well, it is much easier to 
model and there is a well-developed and refined model in ANSYS made 
for this purpose. It is called the CONCRETE material model and it is 
meant to be used in combination with the finite element of type 
SOLID65, which is a modified 8-node hexahedral FE developed 
specially for modelling the concrete. It provides the ability to define the 
“smeared” rebar reinforcement inside each element, as well as the ability 
to track and display the crack that appear in any of 8 integration points 
inside each element during the nonlinear numerical analysis, along with 
the crack type and crack plane orientation. Details of the SOLID65 FE 
are shown in Figure 3. It should be noted that this material model and FE 
can be used only inside the Mechanical APDL environment.  
 

a) b)

 

Figure 3. a) Details of the ANSYS’s 

SOLID65 FE made for modelling 
concrete, b) concrete stress-strain 
diagram in tension for William-Warnke 
model [22] 
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In ANSYS, a more complex material model can be obtained by 
combining two or more elementary material models provided in the 
software. For instance, standard structural steel is usually modelled by 
combining isotropic elastic model with nonlinear plastic model with 
isotropic hardening, to account for the steel plastic deformations. In 
similar manner, the concrete material model is obtained by combining the 
isotropic linearly elastic material model, defined through two parameters 
– Young elasticity modulus and the Poisson’s ratio, and the CONCRETE 

material model, defined through 9 constants, defining the Open shear 
transfer coefficient, Closed shear transfer coefficient, Uniaxial cracking 
stress, Uniaxial crushing stress, Biaxial crushing stress, Hydrostatic 
pressure, Hydrostatic biaxial crushing stress, Hydrostatic uniaxial 
crushing stress and the Tensile crack factor. The highly nonlinear 
behaviour of concrete in compression is directly defined by adding a 
multilinear isotropic behaviour defined through a tabular set of arbitrarily 
many stress-strain points of a compression stress strain diagram. 
This modelling approach yields very accurate results when modelling 
conventional concrete and it has become a benchmark approach when 
dealing with such problems. It is particularly convenient for visual 
representation of material damage, since the cracks can be directly 
plotted, an example of which is given in Figure 4.  
 

a)  b)   
Figure 4. Numerical model of a SFRC cube in a uniaxial compression test; a) 
Mesh with SOLID65 Fes and CONCRETE material model, b) Plot of cracks 
 
However, CONCRETE material model is defined based on the William-
Warnke material model [23], which assumes the tri-linear concrete 
behaviour in tension with the relatively brittle failure mechanism, Figure 
3b. For this reason, it is not suitable to describe the SFRC, since this 
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composite material is much more ductile and exhibits highly nonlinear 
behaviour in tension, as well as in compression. Therefore, another 
material model needs to be examined in order to obtain an appropriate 
SFRC model. 
 
Manetray-William material model (MW model) 
This material model is made especially to model concrete and it is 
available only in more recent distributions of ANSYS software, i.e. since 
v18.1. The main advantage of this material model is that the exact stress-
strain diagram can be defined directly. This is very convenient since the 
stress-strain diagram can be experimentally obtained very easily in many 
standard test procedures, and inputting it directly means that during 
simulation material follows this real behaviour exactly. It should be 
mentioned that prior to this material model, the “negative” elastic 

modulus could not be given in ANSYS material models, that is, the 
stress-strain diagram could not account for stress relaxation when 
plasticity occurs. This has been improved with the Manetrey-William 
model.  
The MW model is defined by three parts. The first part defines the 
plastification conditions by three parameters - Uniaxial compressive 
strength (Rc), Uniaxial tensile strength (Rt) and Biaxial compressive 
strength (Rb). The second part of the model refers to the way the material 
deforms after the plasticization limit is reached, and it is set through the 
Dilatancy angle (ψ), a parameter which shows how the elementary 
volume changes with the increase of plastic deformation. The third part 
of the model defines the post-critical behaviour of the material, i.e. the 
strain hardening or the strain softening of the material. If the third part is 
not explicitly specified, the model assumes perfectly plastic behaviour in 
post-critical zone. This part can be defined in various ways, and for this 
research a linear softening behaviour was defined, and it was done 
through defining six parameters - Plastic strain at uniaxial compressive 
strength (κci), Ultimate effective plastic strain in compression (κcr), 
Relative stress at start of nonlinear hardening (Ωci), Residual relative 
compressive stress (Ωcr), Plastic strain limit in tension (κtr) and Residual 
relative tensile stress (Ωtr), and these parameters are graphically 
presented in Figure 5. It is pointed out that on the abscissa are the plastic 
strains. 
Through these parameters, a desired stress-strain diagram for SFRC can 
be defined exactly, even in tension. However, this model exhibited much 
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convergence difficulties in the simulations done in numerical analysis of 
SFRC made for this research. Moreover, this model cannot show the 
cracks and material damage that occurs in concrete, it can only show the 
plastic zones, but the material remains continuous throughout the 
analysis. For these reasons, another material model was sought that 
would be more suitable for modelling the SFRC. 

 
Figure 5. Parameters for post-critical behaviour for concrete in the Manetray-
William model and the Drucker-Prager model – a post-critical (plastic strain)-
(normalized stress) diagram in a) compression and b) tension [22] 
The Drucker-Prager material model (DP model) 
This material model was made primarily for modelling granular materials 
and concrete. It is also found only in more recent software releases, like 
the previously discussed Manetrey-William model, and it is also defined 
similarly. Namely, the Drucker-Prager model is also comprised of three 
parts. The first and the third part are identical as for the MW model, 
while the second part also defines the material behaviour at plastic 
deformation, but it is now defined through different two parameters – the 
dilatancy parameter in compression (δc) and the dilatancy parameter in 
tension (δt). 
Similarly as with the MW model, an advantage of DP model is that all 
parameters have clear physical meaning and are directly measurable in 
experiments, and the stress-strain curve can be inputted exactly. 
However, while keeping the advantages of this type of input data, unlike 
the MW model, the DP model behaves much better in numerical analysis, 
it is much more stable and robust, and it yields better results when 
modelling SFRC. Nevertheless, it also exhibits convergence issues when 
the material enters the zone of residual stresses, and it also lacks the 
ability to visually represent the cracks in concrete and the damage of the 
material still limit its applicability for modelling the SFRC. So, yet 
another material model provided in ANSYS needed to be investigated. 
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However, these three models are the only ones that ANSYS provided 
specifically for modelling concrete. The rest of the considered material 
models are general purpose, but have some desired characteristics for 
SFRC modelling which make them suitable candidates. 
 
The Material Damage Model (DMG model) 
In ANSYS software, beside the CONCRETE model, the only other 
material model that can provide a direct visual insight into material 
damage and cracks is the Material DAMAGE model, and since it is very 
important to capture cracking when modelling the SFRC, this material 
model is the next one to be considered. 
The material DAMAGE model consists of two parts. The first part 
describes the Damage initiation criteria (DMGI), and the other part 
defines how the damage propagates through the material – the Damage 
evolution law (DMGE). The damage initiation criteria can be described 
in various ways, and ANSYS provides several: maximum stress criterion, 
maximum strain criterion, Puck criterion, Tsai-Wu criterion and Hashin 
criterion, and there is also a user-defined criterion option. For this 
research, a maximum stress criterion was used, defined through four 
parameters – compression and tensile strength of concrete matrix, and 
compression and tensile strength of fibres. For DMGE there are two 
possible variants – the instant material property degradation (MPDG), 
and the Continuous damage model (CDM), where the material 
degradation progresses gradually. The input parameters for this part of 
the model are the viscous damping coefficient and the potential energy of 
deformation released until the material strength reduces to zero. 
The idea was to use the DMG model to simulate the stress-strain diagram 
of SFRC by choosing the appropriate parameter values for CDM, while 
keeping the possibility of crack and material damage visualization. 
However, this could not be achieved due to some inherent limitations 
ANSYS imposes on using the DMG material model. Namely, ANSYS 
allows combining the material DAMAGE model only with the ideally 
elastic isotropic material model, which makes it impossible to input a 
highly nonlinear stress-strain relation needed to describe SFRC 
adequately. And even it was possible to input the stress-strain curve in 
compression, the CDM assumes linear strength degradation to zero, 
which is also not suitable for describing the SFRC behaviour. MPDG is 
even worse for modelling SFRC since it does not allow for any residual 
strength and material properties are instantly reduced to zero upon 
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damage initiation, which would correspond to a ideally elastic-perfectly 
brittle type of failure, and it is also not suitable for SFRC modelling. This 
is why another material model needed to be examined for modelling 
SFRC. 
 
The MicroPLANE material model (MPLAN model) 
Each of the aforementioned models was designed to model some 
particular material, so it has advantages when modelling that material, 
but also some drawbacks when being used to model other materials. This 
led the developers in ANSYS to include a “generalized” material model 

that could be used to describe any material. This “generalized” model is 

constituted by directly defining the constitutive relations for the material, 
which can be different in different directions. They are defined on an 
infinitesimal polyhedral element with 42 sides, so that a separate 
constitutive relation can be defined for each of the 21 section planes. This 
model is therefore called the MicroPLANE material model, and Figure 6 
shows the infinitesimal polyhedron on which the model is defined. 
 

 
Figure 6. The infinitesimal polyhedron with 42 sides for definition of the 
MicroPLANE model [22] 
 
The main idea when using this model is to rewrite the equations of 
Mechanics of continua such as to account for the material damage, which 
is done through 6 parameters. First the deformation tensor and the stress 
tensor are decomposed into a spherical and deviatoric parts, then the free 
Helmholz energy of deformation is defined on a micro scale, and then 
during the homogenization a material damage function is defined. 
Parameters that are introduced to define the material damage function 
include: three parameter for failure mechanics (k0, k1, k2), maximum 
damage parameter (𝛼𝑚𝑖𝑐), degradation speed parameter (𝛽𝑚𝑖𝑐) and 
parameter of the equivalent strain energy at the moment of damage 
initiation (𝛾0

𝑚𝑖𝑐). This enables MPLAN model to be used in a variety of 
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different problems, since that the different values of these input 
parameters produce different failure criteria. For instance, for 𝑘0 = 0,
𝑘1 = 0, 𝑘2 = 1 the Huber-Hanky-Mieses plasticization criterion is 
obtained, 𝑘0 > 0, 𝑘1 = 0, 𝑘2 = 1 gives the Drucker-Prager criterion, 
and so on.  
The MicroPLANE model has already been used to model fibre reinforced 
concrete [24]. In the literature, the following parameter relations are 
proposed as suitable for SFRC modelling 
 

𝑘 = 𝑓𝑐/𝑓𝑡  ,    𝑘0 =
(𝑘−1)

2𝑘(1−2𝜈)
   ,    𝑘1 = 𝑘0  ,    𝑘2 =

3

𝑘(1+𝜈)2
           (1) 

where 𝑓𝑐 is the concrete compression strength, 𝑓𝑡 is the concrete tensile 
strength, and ν is the Poisson’s coefficient.  
However, these relations are empirical, and values for the other three 
parameters (𝛼𝑚𝑖𝑐 , 𝛽𝑚𝑖𝑐 , 𝛾0

𝑚𝑖𝑐) need to be determined through calibrations 
by the experimental results, and the model is highly sensitive to their 
variations. Moreover, microplane material model cannot be combined 
with other material models, and it also cannot visually represent the crack 
and the damage of the material, which is essential for SFRC modelling. 
In addition, this model also showed considerable convergence 
difficulties. Therefore, another solution for SFRC was sought. However, 
this exhausts the available predefined possibilities provided in ANSYS 
software. Since none of the options was not accurate to a satisfactory 
extent, the novel approach for modelling the steel fibre reinforced 
concrete is proposed in this paper, by using the available programme 
resources and writing some user-defined subroutines. 
 
 
3. A novel method for modelling the SFRC with ANSYS 

 
As it has been pointed out in the previous text, none of the predefined 
material models available in ANSYS, separately, was not able to 
adequately model SFRC. This is why an attempt is made in this paper to 
find a novel modelling approach that would exploit the advantages of 
these models, while overcoming their limitations.  
The main idea is fairly simple. Since beside the CONCRETE model, the 
only other material model that enables crack visualization is the Material 
damage model that is the one that will be used. The limitation of this 
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model is that it inevitably assumes linearly elastic material behaviour up 
until the material bearing capacity is reached. However, ANSYS also 
provides another command – the Material Property Change command 
(MPCHG) – which allows that at any point during the numerical analysis 
the material of any finite element be changed with another material 
model. In this way the material stiffness can be changed as needed. 
Therefore, the idea was to define the criteria on which to reduce the 
material stiffness of the finite elements meeting these criteria for a certain 
amount, and these criteria should be checked between each step of the 
nonlinear analysis. By defining several such degradation limits at which 
the material stiffness would be reduced ever more, if defined and applied 
properly, this could impose that, although the material in each finite 
element is linear, the global material model overall follows a multilinear 
stress-strain relation. By choosing sufficient number of degradation 
limits, the nonlinear stress-strain diagram for SFRC can be closely 
approximated by a multilinear relation defined through a sufficiently 
large set of inflection points. Thus the main disadvantage of the DMG 
model is overcome, while keeping its main advantage – the ability to 
visualize crack initiation and propagation through the material. The 
described procedure was successfully implemented in the Mechanical 
APDL programming environment through the algorithm shown in Figure 
7. 
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Figure 7. Algorithm of the novel SFRC modelling approach proposed in this 
paper 
 
Another advantage of the proposed approach is that all the required 
parameters are plain, simple, they have a clear physical meaning and are 
directly measurable in experiments. However, this approach requires a 
finer finite element mesh, which makes it numerically somewhat more 
expansive compared to other considered material models. On the other 
side, the algorithm is simple and robust so the convergence issues are 
avoided. Another disadvantage is that there are no options for this 
modelling approach that are readily available in ANSYS software, but 
this approach rather requires some programming skill for the user to 
apply it. It should also be pointed out that for demonstration purposes in 
this paper only a three-linear stress-strain relation is defined, with two 
material property change limits. However, the number of these points can 
be increased to achieve a better approximation.  
The proposed modelling approach was validated on a benchmark 
problem of modelling a conventional concrete cantilever beam loaded at 
its free end until failure. The results were compared to the ones obtained 
through a standard simulation procedure with using the CONCRETE 
material model and SOLID65 finite element, which are routinely used for 
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conventional concrete modelling. The results are presented in Figure 8, 
and they showed a very good agreement, thus validating the proposed 
novel approach and encouraging its use for SFRC modelling. 
 

 
 
Figure 8. Validation of the proposed modelling approach on a benchmark 
problem. CONCRETE material model with SOLID65 FE (left) and MPCHG 
model (right) 
 
4. Assessment of different SFRC modelling approaches in ANSYS 

 
In this section the performance of all the presented material models in 
modelling the steel fibre reinforce beam will be assessed. All the results 
will be compared to the results obtained in the experiments found in the 
literature [2]. The experiment was a standard four-point-bending test, and 
specimens were made of reinforced concrete with steel hooked fibres and 
conventional steel rebar 2Rϕ12. Details are presented in Figure 9. 
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Figure 9. Details of the experiment [2], a) the setup, b) schematic 
representation of the specimens, c) the experiment results  
 
The geometry and boundary conditions were the same for all the 
considered numerical models and they are shown in Figure 10. For all the 
models the standard general purpose solid hexahedral 3D finite element 
SOLID185 was used, except for the CONCRETE material model where 
the SOLID65 FE was used. The applied material models differed from 
model to model accordingly.  
 

 
Figure 10. The geometry and used boundary conditions for the numerical 
models 
The following material models were tested: the CONCRETE material 
model, the Menetrey-William model (MW), the Drucker-Prager model 
(DP), the material damage model (DMG), the microplane model 



 
 
 
 
 
164 S. PAUNOVIĆ 

 

 
 

(MPLAN), and the novel modelling approach utilizing the material 
property change command (MPCHG). All the results of the numerical 
analysis are presented in Figure 11.  
 

 
Figure 11. The results of the numerical simulations for all the considered 
models 
 
Base on the results of numerical analyses, from the viewpoint of their 
applicability to SFRC modelling, the following assessment of the 
considered material models can be given. 
 
The Menetrey-William (MW) model and the Microplane (MPLAN) 
model 
It is obvious from Figure 11 that these models did not even manage to 
converge to the final load size, the simulation rather fails practically as 
soon as the model enters a nonlinear zone, that is, with the first crack 
openings. It can be concluded that these models are not suitable for 
SFRC modelling. 
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The CONCRETE material model 
It can be clearly seen that deformations of this model are much larger 
than the experiment results, predicting the final specimen bearing 
capacity of only 22kN, whereas the real value measured in the 
experiment was 36.6kN. It can also be noted that the predicted post-
critical curve is much steeper than the actual ones, implying much lower 
material strength. This was expected since the CONCRETE model does 
not assume any residual material strength after the crack occurs, so the 
model degrades more rapidly than the actual SFRC, in which the damage 
propagates much more slowly due to the present fibres. From all this it 
can be concluded that this model also isn’t suitable for SFRC modelling 

and should not be used as such. 
 
 
 
The Material damage (DMG) model 
Form Figure 11 it is apparent that the DMG model accurately simulates 
the SFRC behaviour in the linear zone, but after the cracks occur the 
deformation increases very rapidly. Consequently, although the predicted 
curve follows the shape of the experimental ones quite well after 
stabilization, due to this initial rapid decay the predicted deformations 
remain larger than the real ones measured in the experiment. It can be 
concluded that this model could potentially be used for SFRC modelling, 
but further research to this end is necessary. 
 
The Drucker-Prager (DP) model 
The obtained results imply that the Drucker-Prager material model 
simulates the SFRC behaviour relatively well, but it still predicts material 
strength and model stiffness that are higher than the real ones. Further 
analysis revealed that this model predicts some material softening in the 
post-critical zone, but material degradation is not rapid enough, so the 
residual strength is much higher than the real one, which led to 
overestimated results overall. This emphasizes the main disadvantage of 
this material model – it does not allow for an instant stiffness reduction, 
which is needed to capture the opening of cracks adequately. This model 
is perhaps more suitable for modelling some material which is much 
more ductile than the SFRC, but it cannot describe the SFRC behaviour 
accurately enough.  
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The model with the Material property change command (MPCHG 
model) 
Of all the considered material models, the MPCHG model produced the 
results that are the closest to the ones obtained in the experiment. 
However, it is obvious that not even this model predicted the SFRC 
behaviour accurately enough. The performance of this model could 
possibly be improved by including more points in stress-strain curve 
approximation through more material property change criteria limits, 
leading to a smoother stiffness reduction and more gradual transition 
after the crack occur. The performance could be improved still if even 
finer finite element mesh was used, further cushioning the material 
degradation and lowering the instantaneous initial deformation step. 
Nevertheless, in its current state of development, although it possesses 
some potential to be improved and produce more robust and reliable 
results, this model is also not quite suitable for SFRC modelling. 
 
 
5. Concluding remarks 

 
In this paper some of the issues regarding the modelling of steel fibre 
reinforced concrete (SFRC) in ANSYS software were pointed out. As it 
was shown in the text, the problem of accurate SFRC modelling is a 
challenging task, due to highly nonlinear material behaviour and many 
physical mechanisms that drive the damage initiation and evolution in the 
material. Several possibilities of SFRC modelling within the ANSYS 
software were studied in detail, and the results of all the numerical 
analyses were compared to the experiment results found in the literature. 
However, none of the predefined material models available in ANSYS 
was able to capture the SFRC behaviour in all its detail, so a novel 
modelling approach was proposed, which builds on the advantages of 
some of the predefined ANSYS models, and combines them to overcome 
the shortcomings of each individual model. Nevertheless, although 
producing the best predictions of all the considered models, not even the 
proposed novel modelling approach was accurate to a satisfactory level 
in approximating the actual SFRC behaviour from the experiment. The 
proposed approach can be improved by defining more precise material 
change and failure criteria or by using more material degradation stages. 
This, combined with a finer finite element mesh, could lead to a better 
representation of the SFRC post-critical behaviour. However, in its 
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current state of development, the proposed novel modelling approach is 
unable to provide sufficiently reliable results when modelling SFRC. 
Overall, it can be concluded that ANSYS is not the most suitable 
software for modelling the SFRC as a homogeneous material. It should 
be noted that it may not be the case for a more detailed modelling 
approach such as the XFEM models for instance, but that research 
exceeds the scope of this paper. Still, when modelling the SFRC as a 
homogeneous material, some other software alternatives such as 
ABAQUS or OpenSEES should probably be preferred. 

 
 

References 
 

[1] Lepenies, I. G., Richter, M., & Zastrau, B. W. (2008, December). 
A Multi‐Scale Analysis of Textile Reinforced Concrete 

Structures. In PAMM: Proceedings in Applied Mathematics and 
Mechanics (Vol. 8, No. 1, pp. 10553-10554). Berlin: WILEY‐

VCH Verlag. 
[2] Predrag Blagojević, PhD thesis (2011) Faculty of Civil 

Engineering and Arcitecture, University of Niš, Serbia. 
[3] Andrzej M. Brandt, Fibre reinforced cement-based (FRC) compo-

sites after over 40 years of developement in building and civil 
engi-neering, Composite Structures 86 (2008), pp. 3-9 

[4] D. Snoeck, N. De Belie, From straw in bricks to modern use of 
microfibers in cemntitious composites for improved autogenous 
healing – A review, Construction and Building Materials 95 
(2015) pp. 774-787 

[5] Ronald F. Zollo, Fibre-reinforced Concrete: an Overview after 30 
years of Developement, Cement and Concrete Composites 19 
(1997), pp. 107-122 

[6] T. Blaszczynski, M. Przybylaska-Falek, Steel fibre reinforced 
concrete as a structural material, Procedia Engineering 122 
(2015), pp. 282-289 

[7] B. Mobasher, Y. Yao, Ch. Soronakom, Analytical solutions for 
flexural design of hybrid steel fibre reinforced concrete beams, 
Engineering Structures 100 (2015), pp. 164-177 

[8] H. Behbahani, B. Nematollahi, Steel Fibre Reinforced Concrete: 
A Review, conference paper, December 2011, preuzeto sa sajta 
Research Gate, 22. avgusta 2017. godine, internet adresa: 



 
 
 
 
 
168 S. PAUNOVIĆ 

 

 
 

https://www.researchgate.net/publication/266174465_Steel_Fiber
_Reinforced_Concrete_A_Review 

[9] D.M. Ozcan, A. Bayraktar, A. Sahin, T. Haktanir, T. Turker, 
Experimental and finite element analysis on the steel fibre-
reinforced concret (SFRC) beams ultimate behavior, Construction 
and Building Materials 23 (2009) pp. 1064-1077 

[10] R. Cerioni, P. Bernardi, E. Michelini, A. Mordini, A general 3D 
approach for the analysis of multi-axial fracture behavior of 
reinforced concrete elements, Engineering and Fracture 
Mechanics 78 (2011), pp. 1784-1793 

[11] R. Brighanti, A. Carpinteri, A. Spagnoli, D. Scorza, Crackong 
beahvior of fibre reinforced cementitious composites: A 
comparison between a continuous and a discrete computational 
approach, Engineering and Fracture Mechanics 103 (2013), pp. 
103-114 

[12] D. Nicolaides, G. Markou, Modelling the flexural behavior of 
fibre reinforced concrete beams with FEM, Engineering 
Structures 99 (2015), pp. 653-665 

[13] V. M.C.F. Cunha, J. A.O. Barros, J. M. Sena-Cruz, A finite 
element model with descrete embedded elements for fibre 
reinforced composites, Computers and Structures 94-95 (2012), 
pp. 22-33 

[14] J. Kang, K. Kim, Y. Mook Lim, J. E. Bolander, Modeling of 
fibre-reinforced cement composites: Discrete representation of 
fibre pullout, International Journal of Solids and Structures 51 
(2014), pp. 1970-1979 

[15] V. M.C.F. Cunha, Steel Fibre reinforced Self-Compacting 
Concrete (from Micro-Mechanics to Composite Behavior), PhD 
thesis, University of Minho, Portugal (2010) ISBN: 978-972-
8692-44-5 

[16] V.P. Nguyen, M. Stroeven, L.J. Sluys, Multiscale failure 
modeling of concrete: Micromechanical modeling discontinuous 
homogenization and parallel computations, Computational 
Methods and Aplications in Mechanical Engineering 201-204 
(2012) 139-156 

[17] J. Elias, M. Vorechovsky, J. Skoček, Z. P. Bažant, Stochastic 

discrete meso-scale simulations of concrete fracture: Comparison 
to experimental data, Engineering Fracture Mechanics 135 
(2015) 1-16 



 
 
 
 

 
 MODELLING THE CONCRETE MATERIAL NONLINEARITY  169 

 

 
 

[18] V. Palmieri, L. De Lorenzis, Multiscale modeling of concrete and 
of the FRP-concrete interface, Engineering Fracture Mechanics 
131 (2014) pp. 150-175 

[19] H. M. Jennings, J. W. Bullard, From electrons to infrastructure: 
Engineering concrete from bottom up, Cement and Concrete 
Research 41 (2011) pp. 727-735 

[20] A. Yaghoobi, M. G. Chorzepa, Fracture analysis of fiber 
reinforced concrete structures in the micropolar peridynamic 
analysis framework, Engineering Fracture Mechanics 169 (2017) 
pp.238-250 

[21] W. Gerstle, N. Sau, S. Silling, Peridynamic modeling of concrete 
structures, Nuclear Engineering and Design 237 (2007) pp. 1250-
1258 

[22] ANSYS 21 APDL help manual 
[23] K. J. Willam, E. D. Warnke, Constitutive Model for the Triaxial 

Behavior of Concrete, Proceedings, International Association for 
Bridge and Structural Engineering, Vol. 19, ISMES, Bergamo, 
Italy, p. 174. 1975. 

[23] J. H. P. de Vree, W. A. M. Brekelmans, M. A. J. van Gils, 
Comparison of nonlocal approaches in continuum damage 
mechanics, Computers & Structures 55 (1995)  pp. 581-588 



170 
 
 
 
 
 
 

 

 

Bray-Liebhafsky reaction: 
From monotonous to chaotic evolution 

 
Željko D. Čupić* and Ana Z. Ivanović-Šašić† 

 
Institute of Chemistry, Technology and Metallurgy, University of 

Belgrade, Department of Catalysis and Chemical Engineering, Njegoševa 
12, 11000 Belgrade, Serbia 

 
 

ABSTRACT 
 
 Many physicochemical processes can exhibit various forms of non-linear 
dynamics, which have been widely investigated in the oscillatory 
reaction Bray-Liebhafsky, too. The stoichiometry of this reaction 
corresponds to the hydrogen peroxide decomposition to water and 
oxygen in an acidic environment, in the presence of iodate ions as a 
catalyst. During this reaction an oscillatory change of the intermediate 
species concentration, along with a cascade change in the hydrogen 
peroxide concentration and oxygen removal can be obtained. By 
selecting the experimental conditions, the simple periodic or complex 
chaotic concentration changes can be generated. Concentration 
oscillations are a consequence of alternating dominance of different 
reaction pathways present in the reaction mechanism. Large extent of the 
phenomena experimentally observed in the oscillatory reaction Bray-
Liebhafsky is well explained by the mechanistic model, investigated by 
the Belgrade group over a many years.   
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1. Introduction 
In everyday practice of the whole of human activity, including physical 
chemistry, the nonlinear dynamics is represented at least equally as well as 
linear; actually, linear dynamics is only a limit case of the nonlinear one. [1] 
Probably, the human tendency toward simplification and limited capacity of the 
human brain to perceive and predict the nonlinear dynamics, are the only ones 
responsible for the long-standing dominance of linear models of natural 
processes. This statement is supported by the fact that the processes of nonlinear 
dynamics are observed in all areas that are the subject of scientific 
considerations, among which are the typical examples in elementary particle 
physics, [2] in chemical kinetics, [3]-[7] in electrochemistry [8]-[10] in cell 
biochemical processes [11] and at the level of multicellular organisms, [12],[13] 
in population processes at the level of ecosystems, [14] in the economy [15] and 
astrophysics. [16] 
The study of homogeneous oscillatory reactions (such as: the Bray-Liebhafsky 
one [17]-[30] – first reported homogeneous oscillatory chemical reaction, the 
Belousov-Zhabotinsky [31]-[38] – the most popular one, and the Briggs-
Rauscher [39]-[43] oscillatory reaction) is one of the most important 
contributions from physical chemistry to development of the nonlinear 
dynamics. In this area, oscillatory reaction Bray-Liebhafsky (BL) has a 
particular importance because it was first discovered homogeneous oscillatory 
chemical reaction, furthermore, because it is probably the simplest studied 
chemical oscillator, but also, because the study of this system allow the 
experimental and numerical analysis of a wide range of dynamic phenomena.  
Multiple-time-scale behavior of the BL reaction is explored here to explain 
mechanistic sources of dynamic transitions. Different levels of understanding 
oscillatory process are described here by models with varying complexity. 
Hence, present paper presents results about modeling BL reaction at different 
levels. 
 
2. Multi-level modeling of the BL reaction  
The Bray-Liebhafsky reaction is the hydrogen peroxide decomposition in the 
presence of iodate and hydrogen ions, as catalysts. This, apparently simple 
oscillatory reaction, known as the Bray-Liebhafsky one, consists of a complex 
homogeneous catalytic oscillatory processes involving periodic changes in 
concentrations of numerous iodine intermediates such as I2, I-, HIO, HIO2 and 
I2O, that all oscillates in the same time-scale, but in different phases and relative 
intensities. [25] Periodic changes of the solution color, oxygen removal and 
indicator electrode potential were detected in this system, at temperatures 
between 20°C and 65°C. Periodicity in this system is a consequence of complex 
reaction mechanism which consists of a series of reaction steps with multiple 
feedbacks. Just like any complex process, the BL reaction may be modeled at 
several levels of understanding. Here, it will be described starting from the most 
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rudimentary, system level, where system components are defined, and then, 
with gradually increasing complexity, details of the process will be added to the 
model, making it, finally, convenient to describe even the strangest dynamic 
states of chaos. 
 

2.1. System-level – components  
Investigation of the BL reaction is often performed in either open or closed 
reactor, usually in the form of thermostated bath with some mixing device (Fig 
1.). Although the system has finite phase boundary, reaction goes on within the 
liquid phase. The advantage of open systems over the closed ones is in the 
presence of inlets/outlets for continuous inflow/outflow of reactants/reaction 
mixture, which is the external force used to maintain this dissipative system in 
vicinity of the unstable steady state, far from equilibrium.  

 
Figure 1. Continuous Stirred Tank Reactor (CSTR). If pumps are removed, the 
batch reactor is obtained. 
 
Flow rate in open oscillating BL systems is always small against the fast 
reaction rates in oscillations, and mixing makes the liquid system 
macroscopically homogeneous. Thermostated coat ensures that rate constants 
have really constant values independent on extent of the reaction and its heat 
effects. Hence, usual approach in modeling BL reaction assumes deterministic, 
mean field approximation, where state of the system is represented by mean 
concentrations of all species. Thus, the BL reaction is described by the system 
of Ordinary Differential Equations (ODE) which depicts the changes in 
concentration of reaction species in time (see below). 
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Moreover, the first approximation of the BL reaction system would have to be 
nothing else, but liquid water (H2O), since it is by far the most abundant 
component in the system. The water concentration is about 55 M and 
concentrations of other macro-components (H2O2, H+, IO3

−, K+, SO4
2−) are for 

about three orders of magnitude lower. Besides, ionic species K+ and SO4
2− are 

not involved in any significant reaction, and will not be considered further. 
Thus, typical concentration of hydrogen peroxide (as well as H+ and IO3

−) 
during the oscillatory state of the system is between 10−2 and 10−1 M, the 
concentration of iodine, I2, is between 10−5 and 10−4 M, whereas the 
concentrations of other intermediary species are even much lower, between 10−9 
and 10−6 M. Nonetheless, the role of water in the BL system is often neglected 
and underestimated, since it is not directly involved in reduction - oxidation 
processes. There is no doubt that water plays important role in solvation, 
changing all reaction rates and dynamics of the oscillating process. There is also 
increasing number of evidences that water is even more important, taking part 
in redirecting energy transfer during the delicate oxidation phase of the BL 
reaction. [44]-[48] However, we are still far away from clear understanding of 
water structure and its dynamics, and therefore, this level of modeling will here, 
again, be neglected. All effects of water will here be considered as included in 
rate constants of particular reactions. 
 
2.2. Process-level – reaction 
The most intensive effect of the BL reaction is the decomposition of the 
hydrogen peroxide with production of oxygen.  
 

 3IO , H
2 2 2 22H O 2H O O

 
  . (D) 

 
Process is followed by the stoichiometricaly equivalent production of water, 
which has no noticeable effect on overall composition, since it is already 
present in large excess. Concentrations of two other macrocomponents (iodate 
and hydrogen ions) are changed during reaction, but in so small extent that we 
can consider them as constant, and equal to initial values during the whole 
process. Thus, their role is mainly catalytic. Hence, corresponding reaction (D) 
represents the next level model of the BL reaction. The process (D) is 
irreversible, since oxygen leaves liquid phase and goes to the gas phase. 
Consequently, the equilibrium is never reached and reaction goes until complete 
exhaust of the hydrogen peroxide as the only reactant. Since hydrogen peroxide 
decays in time, and oxygen, as the only product besides water, leaves the 
mixture through the phase boundary, concentrations of all species in liquid 
mixture are much less than the water content in all times, and hence, new model 
is consistent with previous one.  
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The BL reaction rate depends on several control parameters, such as the 
temperature in both reactors (closed and open) and flow rate in open reactor, or 
also the initial concentrations of the above mentioned reaction species (H+ and 
IO3

−) which are aproximately constant during reaction. Finally, reaction rate in 
BL reaction depends also on hydrogen peroxide concentration. Usually, 
decomposition reactions correspond to the first order reaction kinetics. In fact, 
within a very wide region of concentration values of the BL system 
constituents, hydrogen peroxide concentration really monotonously decays in 
time with first order kinetics. Even, during the periodic changes of iodine 
species concentrations, while hydrogen peroxide decays in cascades, small steps 
in its concentration curve could be neglected, and overall change fits well the 
first order kinetics (Fig. 2). 

 

  
Figure 2. Changes of the hydrogen peroxide concentration with time, during 
oscillatory reaction BL. Solid circles designate experimentally measured values 
and line approximates the first order decay. The R and O branches are indicated. 
Results from ref. [49]. 

 

2.3. Alternate-pathways-level of modelling 
Periodic changes of the solution color (connected with hydrogen peroxide 
concentration changes, Fig. 2) observed in the BL system are not explained 
either by the stoichiometry of the reaction (D) or by the simple first order 
reaction kinetics. The first attempt to explain these phenomena was already in 
the first report about the BL oscillatory reaction, [17] where Bray analyzed dual 
role of hydrogen peroxide as an oxidizing and reducing agent. There, he noticed 
that the hydrogen peroxide decomposition to water and oxygen in the presence 
of iodate and hydrogen ions is the result of the reduction (R) of iodate to iodine 
and the oxidation (O) of iodine to iodate by the following reaction scheme: 
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 3 2 2 2 2 22IO 2H 5H O I 5O 6H O       (R) 

 2 2 2 3 2I 5H O 2IO 2H 4H O     . (O) 
 
Rates of the two processes are in such ratio that only small extent of the iodate 
is converted to iodine and vice versa in any moment of time. Their rates tend to 
become equal, and, when the two processes achieve balance, the overall process 
is represented by the sum of these two reactions (R) and (O), which is identical 
to the smooth decomposition reaction (D). Then, we usually observe only a 
smooth decomposition described by reaction (D) where iodine, as intermediate 
species, does not appear in corresponding net stoichiometric relation. Hence, the 
model is at present level in consistency with the previous one. However, 
concentration of iodine, produced in reaction pathway (R), and removed in 
reaction pathway (O), gives coloration to the BL system solution. Periodic 
changes of the color are induced by periodic changes in the domination of the 
processes (R) and (O). Namely, in a narrow range of initial concentrations 
values, the alternating domination of processes (R) and (O) occurs, resulting in 
alterations between periods of slower increase (R branch) and faster decrease (O 
branch) of the iodine concentration during stepwise decrease of the hydrogen 
peroxide and increase of the oxygen concentrations. 

 
Figure 3. Changes of the iodine concentration with time, during oscillatory 
reaction BL. The R and O branches are indicated. The concentrations of iodate 
and hydrogen ions were: [IO3

-] = 0.0474 M, [H+] = 0.0958 M. Rate constants 
are taken from the ref. [50].  

 
Nevertheless, it is obvious that the two reactions cannot be elementary 
processes. Their kinetics was investigated in many years and complex kinetic 
rates were established indicating several reaction steps with many intermediary 
species involved in each of the two. At the end, no rate law identified in two of 
the processes could successfully simulate periodic changes. Thus, stoichiometry 
of periodic processes was well described at the present level of model, but not 
the reaction kinetics. More precisely, the necessary feedback needs to be 
included in the model of the reaction mechanism. 
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2.4. Kinetic level – model capable to simulate oscillatory dynamics  
In attempts to construct appropriate model able to simulate oscillating reaction, 
several reaction networks were synthesized with all possible reaction steps and 
intermediary species. However, reaction rates mainly remained unknown. 
Therefore, modeling based on such detailed description was still unsuccessful. 
Further development leaded to several approximations and model reductions, 
based on excluding very slow or less probable reaction pathways and 
condensing details of complex branches from detailed reaction network into 
simplified representations by single steps with empirically evaluated rate 
constants. This phase in the frame of modeling process is not uniquely defined 
and, consequently, several models occurred attempting to explain the BL 
system. [17]-[19],[21],[22],[50]-[60] Among the most successful results, there 
is a model M(1-8) represented by eight reactions or reaction steps (R1-R8 in 
Table 1), where three of them are reversible. It will be used in the following 
analysis of the process.  
Summation of all reactions in model M(1-8) gives again reaction (D), making 
system inherently consistent with its lower level representation. Reaction (D) 
represents smooth decomposition steady state of the model M(1-8), in which, all 
reactions run with equal rate. Reactions (R) and (O) are also incorporated in the 
reaction network of the model M(1-8), but in less obvious way. They are 
manifested only as partial sums of certain reaction pathways alternately 
dominating during the reduction and oxidation phase in oscillations (Table 2).  
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Table 1. Model M(1-8) of the BL reaction used in numerical simulations under 
batch conditions. [57] 

Reaction or Reaction step Reaction ratea No. 

3IO I 2H       2HIO HIO  
r1 = k1 [I–] 
r–1 = k–1 [HIO] 
[HIO2] 

(R1) 
(R–
1) 

2HIO I H      2 2I O H O  r2 = k2 [HIO2] [I–] (R2) 

2 2I O H O    2HIO  
r3 = k3 [I2O]  

r–3 = k–3 
2[HIO]  

(R3) 
(R–
3) 

HIO I H      2 2I H O  
r4 = k4 [HIO] [I–] 
r–4 = k–4 [I2] 

(R4) 
(R–
4) 

2 2HIO H O    2 2I H O H O     r5 = k5 [HIO] (R5) 

2 2 2I O H O    2HIO HIO  
r6 = k6 [I2O] 
 

(R6) 

2 2 2HIO H O    3 2IO H H O    r7 = k7 [HIO2] (R7) 

3 2 2IO H H O      2 2 2HIO O H O   r8 = k8 (R8) 
a Reaction rate constants at 60°C: k1 = 1.383  102 min–1; k–1 = 7.91  107 mol–1 
 dm3  min–1; k2 = 4.79  1010 mol–1  dm3  min–1; k3 = 5.00  103 min–1; k–3 = 
3.15  108 mol–1  dm3  min–1 ; k4 = 3.00  1011 mol–1  dm3  min–1; k–4 = 
46.97 min–1; k5 = 2.974  102 mol–1  dm3  min–1; k6 = 1.00  104 mol–1  dm3 
 min–1; k7 = 4.00  101 mol–1  dm3  min–1; k8 = 4.4606  10–6 min–1. The 
concentrations of iodate and hydrogen ions, taken as constant in simulations 
( 3[IO ]  = 0.0474 mol × dm-3 and [H+] = 0.0958 mol × dm-3) are included in 
corresponding rate constants. Unlike the models presented in the literature, here, 
the concentration of hydrogen peroxide is taken as constant in simulations, too 
([H2O2] = 0.0200 mol × dm-3) and also included in corresponding rate constants. 
 
Hence, reactions (R) and (O) and corresponding reaction pathways represent 
some new kind of steady states, other than smooth decomposition one. 
Corresponding steady states must be connected with balanced production and 
consumption of selected intermediary species, only. The hydrogen peroxide is 
always only consumed and therefore it cannot be balanced in present model. 
Besides, the iodine is also produced from iodate in process (R) and it is spent in 
process (O) to regenerate iodate. Hence, production and consumption are not 
balanced for these two species in corresponding (R) and (O) steady states. Other 
iodine species do not appear in the observed stoichiometry, and thus, seem to be 
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balanced. Similar differentiation between reaction species is usually connected 
with slow-fast dynamics. 
 

Table 2. The reaction pathways derived from the model M(1-8) 
1.Reaction pathways: 

(R2) + (R5) + (R6) 
(R1) + (R5) + (R7) 

(R-1) + (R2) + (R6) + (R8) 
(R7) + (R8) 

Net reaction (D) 

2 2 2 22H O 2H O O   

2.Reaction pathways: 
2x(R1) + 2x(R2) + 2x(R3) + (R4) + 5x(R5) 
3x(R-1) + 2x(R2) + 2x(R3) + (R4) + 5x(R8) 
2x(R2) + 2x(R3) + (R4) + 3x(R5) + 2x(R8) 

Net reaction (R) 

3 2 2 2 2 22IO 2H 5H O I 5O 6H O       

3.Reaction pathways: 
2x(R-1) + 3x(R2) + 2x(R-3) + (R-4) +5x(R6) 

(R1) + 2x(R-3) + (R-4) + 2x(R6) + 3x(R7) 
(R2) + 2x(R-3) + (R-4) + 3x(R6) + 2x(R7). 

Net reaction (O) 

2 2 2 3 2I 5H O 2IO 2H 4H O      

 
 

Slow and fast subsystem 
Obvious difference between reaction species included in the model, is in the 
concentration levels. The concentrations of reaction species in the considered 
process differ for several orders of magnitudes among themselves. Thus, in 
oscillatory dynamic state of the BL system, typical concentration of hydrogen 
peroxide is between 10−2 and 10−1 M, concentration of iodine is between 10−5 
and 10−4 M, whereas the concentrations of other species are much lower, 
between 10−9 and 10−6 M.  
In systems, where concentrations of crucial species differ significantly, the 
relaxation oscillations are common. Such oscillations are generated by 
alternating relatively long periods of slow changes, eventually interrupted by 
short and sudden jumps to another state of relatively slow changes. These 
oscillations are connected with slow-fast dynamical systems where dynamical 
variables are divided in slow and fast ones, according to time scale at which 
they are changed. There, fast variables always quickly adjust to any change in 
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slow variables, which act as the parameters for the fast subsystem. Dynamics of 
such systems is reduced to lower dimensional subspace of the phase space. 
Hydrogen peroxide, hydrogen ion and iodate concentrations are much higher 
than those of other species and one can approximate that they are constant. 
Thus, in a case where these concentrations are considered as a fixed parameters, 
iodine concentration is the only slow variable and concentrations of other four 
iodine species (I−, HIO, HIO2, I2O) from the Model(1-8) are fast variables. The 
stationary values of fast variables are positioned on the one-dimensional curve 
in five-dimensional space. This curve, known as slow nullcline, represents 
steady states of the fast subsystem, which are functionally dependent on 
instantenous values of the slow variable, iodine concentration. There are other 
nullclines too, and they correspond to various combinations of four variables, 
among complete set of five ones. However, only the one that correspond to the 
set of fast variables only, attracts the trajectories from the whole phase space 
and it represents one form of the so-called slow manifold of the dynamical 
system. Starting from an arbitrary point in the phase space, the system follows 
its fast component dynamics and jumps to the nearest point on the slow 
nullcline. Once after the system reaches it, fast variables are balanced and only 
slow component of the dynamics governs further propagation over the nullcline, 
ending usually in the special point on the nullcline representing stable steady 
state. Therefore, this specific nullcline is named the slow nullcline, while all 
others are fast ones. The direction of propagation over the slow nullcline is 
governed by relative position of the dynamic system with respect to the fast 
nullclines. The steady state is positioned in the crosspoint of slow and fast 
nullclines. 
In the domain where relaxation oscillations are present slow nullcline is folded 
having at least two stable and one unstable branch in one interval of slow 
variable values. Slow nullcline calculated for the studied model is folded, as can 
be seen in Fig. 4. The steady state is in that case positioned on the unstable 
middle branch of the slow nullcline, and this steady state is also unstable. In that 
case, the fast variables often alternate between two stable branches resulting in 
relaxation oscillatory evolution of considered dynamical system.  
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Figure 4. Slow (thick) and fast (thin) nullclines of the Model(1-8). R and O 
branches of the folded slow nullcline are designated. Arrows indicate directions 
of fast (solid line) and slow (dashed line) components of the dynamics in areas 
divided by nullclines.  

 
Described two stable branches of the slow nullcline correspond to reaction 
pathways (R) and (O). System represented by the point on the upper branch 
(high iodide concentration) evolves according to (R) stoichiometry. It means 
that iodine concentration is increased and point is moved to right until it 
eventually reaches fold point delimiting stable and unstable branch. At this 
special point, system tends to continue increasing iodine concentration but for 
new higher values only lower branch values of the fast variables could satisfy 
fast subsystem steady state conditions. Hence, the system jumps to lower branch 
of the nullcline. There, it moves toward lower values of the iodine concentration 
according to the stoichiometry of (O) process until it comes to the other fold 
point. From this point, the only way is the new jump to the upper branch where 
cycle is closed. According to calculated nullclines Model(1-8) should be able to 
simulate oscillations. However, it must be confirmed by direct numerical 
experiment. 
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Numerical simulations 
For final tests of oscillatory properties, the Model(1-8) must be used to generate 
periodic changes of concentrations. Hence, the system of ODE-s must be 
formed in accordance with the model. Each concentration is changed with rate 
which is sum of individual reaction rates multiplied by corresponding 
stoichiometric coefficients. Rates of individual reaction steps are given in Table 
2, according to reaction stoichiometry and mass action law. Relative 
significance of these steps is given by rate constants multiplying concentrations 
of reacting species in particular step. The same rules could be used to form rate 
equations for each one reaction species, no matter if it is reactant, product, or 
intermediary species. However, some of reaction species are dynamically 
unimportant. Since the concentrations of iodate and hydrogen ions are 
significantly larger than the concentrations of other reaction species, they can be 
considered as constant without affecting qualitatively the results. Extending the 
model with two differential equations to account for the temporal evolution of 
these two species does not alter the dynamic structure of the system, including 
the highly sensitive mixed mode oscillation range, but only shifts a little the 
bifurcation points with respect to any control parameter values. [61] Hence the 
calculations presented here use 3[IO ] = 0.0474 and [H+] = 0.0958 mol/dm3. 
[62],[63] Furthermore, in model M(1-8) hydrogen peroxide is the only reactant. 
The reaction kinetics depends on its concentration only parametrically. Its 
changes in oscillations are much slower than others, and we consider that it is 
not essential for occurrence of oscillations and it will be taken as constant in the 
first approximation. Hence, in the model under consideration, there are five 
independent intermediary species: I2, I–, HIO, HIO2 and I2O and only they are 
dynamically important.  
 
 d[I2]/dt = r+4 – r–4  
 d[I–]/dt = – r+1 + r–1 – r2 – r+4 + r–4 + r5 
     d[HIO]/dt = r+1 – r–1 + 2 r+3 – 2 r–3 – r+4 + r–4 – r5 + r6 (1) 
 d[HIO2]/dt = r+1 – r–1 – r2 + r6 – r7 + r8 
     d[I2O]/dt = r2 – r+3 + r–3 – r6. 
 
 
The ri, r+i and r–i denote respectively the rates of whole reactions i, its forward 
part and its reverse part. The values given in Table 1 are taken from ref. 
[64],[65] and include fixed concentrations of iodate, hydrogen ions and 
hydrogen peroxide.  
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Figure 5. Numerical simulations of the Model(1-8). [H2O2] = 0.02 M.  

 
Results in Fig. 5 confirm ability of the Model(1-8) to simulate sustained 
oscillations of iodine, maintaining the same type of relaxation oscillations as 
they are observed in experiments. 

 
2.5. Dynamic level – model capable to simulate chaotic dynamics  
In numerical simulations of batch reactor experiments, changes of hydrogen 
peroxide concentrations are also important, just because its parametrical 
influence on changes in the form of oscillograms. Hence, additional differential 
equation has to be added for new variable: 
 
d[H2O2]/dt = – r5 – r6  – r7– r8 . (2) 
 
Moreover, some rate equations need to be adapted since hydrogen peroxide 
concentration is not included in rate constants any more: k5 = 1.487  104 mol–1 
 dm3  min–1; k6 = 5.00  105 mol–1  dm3  min–1; k7 = 2.00  103 mol–1  dm3 
 min–1; k8 = 2.2303  10–4 min–1. Apropriate rate expressions are now: 
 
r5 = k5 [HIO] [H2O2] 
r6 = k6 [I2O] [H2O2] 
r7 = k7 [HIO2] [H2O2] (3) 
r8 = k8 [H2O2]. 
  
The shape of the slow nullcline is dependent on parametrically changing 
hydrogen peroxide concentration. By merging slow nullclines for the range of 
hydrogen peroxide concentrations, one obtains folded surface that attracts all 
trajectories from the phase space. Since hydrogen peroxide concentration is 
slowly decaying in closed reactor, oscillations are evolving with time as system 
slowly glides over the surface (Fig. 6). After some time, system approaches the 
point where folded surface unfolds and oscillations disappear through the 
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sequence of damped, nearly harmonic oscillations. This transition corresponds 
to supercritical Andronov-Hopf bifurcation that occurs at critical value of 
hydrogen peroxide concentration. 
 

 
 
Figure 6. Surface of slow nullclines for a sequence of [H2O2] values and 
trajectory of the BL reaction obtained for the Model(1-8) in the batch reactor.  
 
Thus, at this level of modelling, damped oscillations of relaxation type, as well 
as nearly harmonic ones, are successfully described by model M(1-8). Even 
many other properties of the experimental oscillograms are simulated with 
given model, including pre-oscillatory period, and dependence on initial 
concentrations or temperature. However, complex oscillations are still not 
explained at this level of approximation. 
Complex dynamic states like chaos, are better examined in open reactor where 
the selected dynamics can be sustained infinitely. Although, the first eight 
reactions in Table 1, are enough to describe well the mechanism of the process 
under batch conditions, additional ones must be taken into account in an open 
continuous stirred tank reactor (CSTR), where complex oscillations could be 
maintained for a very long time. Additional reactions represent only inflow and 
outflow of chemical species into the reaction mixture and out of it (Table 3). In 
this extended model only hydrogen peroxide is considered as the inflow species. 
(The reaction system can be open with respect to other species, too. However, in 
that case, the number of intermediate species and related reactions increases 
importantly resulting in large mathematical problems without essentially 
important results.) In the model under consideration, where hydrogen peroxide 
is taken as the only inflow species, there are now six independent species: H2O2, 
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I2, I-, HIO, HIO2 and I2O and again, they are all dynamically important. 
Concentrations of iodate and hydrogen ions are again considered as constant. 
Hence the calculations presented here use 3[IO ] = 0.0474 and [H+] = 0.0958 
mol/dm3 as before. [62],[63] The time evolutions of other species are described 
by the six following differential equations: 
 
 d[H2O2]/dt = – r5 – r6  – r7– r8 + j0 ([H2O2]in – [H2O2]) 
 d[I2]/dt = r+4 – r–4 – j0 [I2] 
 d[I–]/dt = – r+1 + r–1 – r2 – r+4 + r–4 + r5 – j0 [I–] 
     d[HIO]/dt = r+1 – r–1 + 2 r+3 – 2 r–3 – r+4 + r–4 – r5 + r6 – j0 [HIO]  (4) 
 d[HIO2]/dt = r+1 – r–1 – r2 + r6 – r7 + r8 – j0 [HIO2] 
     d[I2O]/dt = r2 – r+3 + r–3 – r6 – j0 [I2O]. 
 
The values given in Table 3 are taken from the already published model 
[64],[65] and include fixed concentrations of iodate and hydrogen ions.  
Thus, mathematically speaking, we are dealing with six-dimensional problem. 
This model is able to describe almost all features of BL reaction, including 
regular simple oscillatory evolution, periodic mixed-modes with large-
amplitude oscillations (LAO-s) and small-amplitude oscillations (SAO-s), as 
well as the chaotic occurrence of LAO-s and SAO-s and their combinations. 
[66] 
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Table 3. Model M(1-15) of the BL reaction used in numerical simulations 
under CSTR conditions.[50] 
Reaction   Reaction ratea No. 

3IO I 2H       2HIO HIO  
r1 = k1 [I–] 
r–1 = k–1 [HIO] 
[HIO2] 

(R1) 
(R–1) 

2HIO I H      2 2I O H O  r2 = k2 [HIO2] [I–] (R2) 

2 2I O H O    2HIO  
r3 = k3 [I2O]  

r–3 = k–3 
2[HIO]  

(R3) 
(R–3) 

HIO I H      2 2I H O  
r4 = k4 [HIO] [I–] 
r–4 = k–4 [I2] 

(R4) 
(R–4) 

2 2HIO H O    2 2I H O H O     r5 = k5 [HIO] [H2O2] (R5) 

2 2 2I O H O    2HIO HIO  r6 = k6 [I2O] [H2O2] (R6) 

2 2 2HIO H O    3 2IO H H O    r7 = k7 [HIO2] [H2O2] (R7) 

3 2 2IO H H O      2 2 2HIO O H O   r8 = k8 [H2O2] (R8) 

( 2 2H O )in   2 2H O  r9 = j0 [H2O2]in (R9) 

2 2H O    ( 2 2H O )out r10 = j0 [H2O2] (R10) 

I    (I–)out r11 = j0 [I–] (R11) 
HIO   (HIO) out r12 = j0 [HIO] (R12) 
HIO2   (HIO2) out r13 = j0 [HIO2] (R13) 
I2O   (I2O) out r14 = j0 [I2O] (R14) 
I2   (I2) out r15 = j0 [I2] (R15) 
a Reaction rate constants at 60°C: k1 = 1.383  102 min–1; k–1 = 7.91  107 mol–1 
dm3  min–1; k2 = 4.79  1010 mol–1  dm3  min–1; k3 = 5.00  103 min–1; k–3 = 
3.15  108 mol–1  dm3  min–1 ; k4 = 3.00  1011 mol–1  dm3  min–1; k–4 = 
46.97 min–1; k5 = 1.487  104 mol–1  dm3  min–1; k6 = 5.00  105 mol–1  dm3 
 min–1; k7 = 2.00  103 mol–1  dm3  min–1; k8 = 2.2303  10–4 min–1. In CSTR 
we distinguish inflow species (Xi)in and outflow species (Xi)out. The 
concentrations of iodate and hydrogen ions, taken as constant in simulations 
( 3[IO ]  = 0.0474 mol × dm–3 and [H+] = 0.0958 mol × dm–3) are included in 
corresponding rate constants. The inflow concentration of hydrogen peroxide 
was [H2O2]in = 0.155 mol × dm–3. Flow rate as control parameter is designated 
as j0.  
 
Hydrogen peroxide is now considered as dynamical variable, but since it has 
largest concentration and is changed at smallest extent, it is now included in the 
list of slow species. Thus, now there are two slow and four fast variables. The 
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stationary values of fast variables are now positioned on the two-dimensional 
surface in six-dimensional phase space. It is known as manifold. It is nearly the 
same as the folded surface formed by merging nullclines of the smaller model 
M(1-8) for batch reactor. However, manifold surface is constructed from the 
larger extended model and this surface now consists of points representing 
steady states of the fast subsystem, which is functionally dependent on 
instantenous values of both slow variables. In the domain where relaxation 
oscillations are present, this surface is folded, having at least two stable and one 
unstable branch. Such a manifold calculated with the studied model can be seen 
in Fig. 7. Fast variables in that case often alternate between two stable branches 
resulting in relaxation oscillatory evolution of considered dynamical system. 
 

 
 
Figure 7. Surface of slow manifold and trajectory of the BL reaction obtained 
for the Model(1-15)  in the CSTR. 
 
In singular perturbation theory all variables are usually classified just as slow or 
fast ones, such that we are dealing, there, with the models having usually just 
two fast and one slow, or just one fast and two slow ones. These models exhibit 
different dynamical characteristics. Moreover, dynamical system with two slow 
and one fast variable can often be rescaled to system with one slow and two fast 
variables. [67],[68] Considered model is selforganized in such manner that its 
dynamical states can alternate during the course of reaction, between the ones 
characteristic for two slow and one fast variable to the others characteristic for 
one slow and two fast variables. [67]  
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In chemical, physicochemical and biochemical nonlinear dynamical systems the 
multiple-time-scale models consist commonly of three time-scale types of 
variables. There are, usually, several slow ones (external species, generally, 
reactants and products), several fast ones (internal species, intermediates) and 
often a middle one (the slow-fast one) having either internal or external 
characteristics in different regions of phase space. Necessary condition for such 
alternations is that some species belong to middle scale in both, concentration 
and time scale.  
Hence, the situation in BL system is analogous to dynamical systems with two 
slow and several fast species. However, fast species in the BL system are all 
synchronized so that they oscillate either in the same phase (HIO, HIO2 and 
I2O), or in the anti-phase (I-) with each other. Thus, they can be considered as 
mutually coupled variables, so that only one of them is really independent. In 
many ways, such a system could be considered as the system with two slow and 
only one fast species. 
In multiple-time-scale systems with more than one slow variable, mixed-mode 
oscillations (MMOs) may appear within the region with simple sustained 
oscillations. They generally consist of two types of oscillations with distinct 
amplitudes: LAOs and SAOs. The LAOs are global phenomena, generated by 
the geometry of the critical manifold having an unstable branch between two 
stable ones. They are well known as relaxation type dynamics governed by slow 
sliding of the system over the stable branches of critical manifold, periodically 
interrupted by much faster jumps from one to another stable branch of this 
hyper-surface in phase space (as already described at previous level). These fast 
jumps usually occur at special points (fold points forming the fold line) of the 
critical manifold where the stable branch is connected with unstable one.  
However, in mixed-mode, LAOs are mixed with SAOs of different nature. They 
occur at the fold points as a local phenomena generated by some folded 
singularities. In the mixed-mode region we can also expect the occurrence of 
complex dynamic phenomena known as canards and tourbillion. [67],[69]-[72] 
For complex phenomena in dynamical systems on multiple time scales, the fold 
is an object of special importance, just as steady state is for linear systems and 
limit cycle for simple oscillations. Fold points are determined according to ref. 
[67], from the condition:  
 

iDet(J(X )) 0 , (5) 
 
where Xi denotes the fast species HIO, HIO2, I2O and I– and J is the Jacobian of 
corresponding fast subsystem. This request must be fulfilled on the border 
between stable and unstable branch of the critical manifold, Fig. 8. 
Concentrations of slow species are treated here (in evaluation of the Jacobian 
for fast subsystem) as they are constant. This assumption seems to be 
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appropriate since they are changing on much slower time scale then the fast 
ones. 
The singularity point on the fold line was calculated according to ref. [67], from 
the condition: 

 

1 2

1 2

d d
0

d d

 
   
 

f fg g

t x t x , (6) 

 
where x1 and x2 are concentrations of slow species, f1 and f2 are their 
corresponding rates and g is a rate of the fast variable. In our case this gives for 
e.g. [HIO]: 
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. (7) 

 
Furthermore, two nullclines were evaluated from corresponding rate equations 
for sets of all four fast species combined with each of two slow ones, Fig. 8. 
Hence, we have one nullcline that describe the steady state condition of species 
I2, HIO, HIO2, I2O and I– (the iodine nullcline) and the other one for the 
combination H2O2, HIO, HIO2, I2O and I– (the hydrogen peroxide nullcline). 
Each one of two subsystems gives as a solution a line, located in the critical 
manifold of the fast species. Steady state of the full system is placed in the point 
where two nullclines intersect, and it will be shortly referred below as the 
equilibrium, keeping in mind that our system is of non-equilibrium type. More 
precisely, in our papers this is known as disproportionation steady-state.[50]  
Finally, Andronov-Hopf point was identified numerically on the iodine nullcline 
using simple test ensuring that the real part of two complex eigenvalues 
(corresponding to corresponding five dimensional Jacobian) is passing through 
zero. 
The SAO occurs when trajectory comes close to the fold line and starts spiral 
damped circling around nullcline which contains steady states of slow-fast 
subsystem including iodine with other fast species. The system becomes closest 
to the nullcline and amplitude of SAOs are the smallest when this spiral circling 
gets him nearest to the Andronov-Hopf point. From this point on, spiralling 
makes system go away from the Andronov-Hopf point and SAO amplitudes are 
raising leading finally to new global jump representing LAO excursion. 
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(a ) 

 
(b) 

 

Figure 8. Slow manifold and trajectory of the MMOs for the Model(1-15). (a) 
The fold line (presented by solid line) and two nullclines (iodine nullcline 
presented by dashed line and peroxide nullcline by dotted line) are given. (b) 
Enlarged part showing structure of SAOs around the fold line.  
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Hence, observed complex mixed mode oscillations are decomposed in three 
segments by the properties of the analyzed model. First, in the LAOs itself, 
clear fast dynamic in jumps from one to another manifold branch are alternating 
with clear slow dynamics over the manifold surface. Then, in SAOs, the third 
component with mixed slow-fast dynamics leads to spiralling near the fold line. 
Therefore, the decisive role for the MMO appearance must be ascribed to the 
iodine species, due to their dynamical role changing from the slow one in LAOs 
to the fast one in SAOs. 
Complex oscillations in the BL system, including LAO and SAO type MMO, 
could be periodic or aperiodic - chaotic. It depends only on specific ratio 
between control parameters. Continuous increase of the flow rate, with fixed all 
other parameters, leads to discontinuous increase (Figure 9) of so called firing 
number F, indicating fraction of SAOs in MMOs: 
 

S
F

S L



 (8) 

 
where S and L are numbers of SAOs and LAOs in one period, or more 
generally, total numbers of SAOs and LAOs in long enough sequence of any 
kind of oscillations, either periodic or aperiodic ones. 
 

 
Figure 9. Devil's staircase. Firring number as a function of flow rate for the 
Model(1-15). 
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Chaotic windows occur between each pair of periodic dynamic states, Fig. 10. 
In chaotic dynamic states, irregular alterations of LAO and SAO cycles occur 
with properties typical for neighboring periodic windows. Hence, the fraction of 
SAOs and LAOs in MMOs is the only important factor determining if the 
system will be periodic or chaotic. Furthermore, we explained that this fraction 
is determined by the fraction of the slow-fast character of the iodine species 
depending on the flow rate value. Hence, our model successfully explained 
deterministic dynamic state shifts with controlled changes of the flow rate, 
Figure 11. 
 
 

 

 
Figure 10. Numerical simulations of the oscillatory dynamics of the BL 
reaction realized in open reactor (segment from 0 to 300 min) presented by 
means of the iodide concentration (in mol × dm–3). (a) Regular oscillations, kf = 
4.70×10–3 min–1; (b) and (c) mixed-mode oscillations, kf = 4.842200×10–3 min–1 
and kf = 5.05×10–3 min–1, respectively. 
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Figure11. Numerical simulations oscillatory dynamics of the BL reaction 
realized in open reactor (segment from 0 to 1000 min) presented by means of 
the iodide concentration (in mol × dm–3). Deterministic chaos with chaotically 
distributed number of the small-amplitude oscillations between the large-
amplitude ones, kf = 5.0815×10–3 min-1. 
 
Generally, chaotic dynamics occurs when limit cycle loose stability with 
changes of the control parameter values. This kind of behavior is easier to 
understand through the changes in iteration maps. Two neighbouring periodic 
states of the BL reaction model are given in Figure 12, one of them 
corresponding to the dynamic of 4131 type, and the other of (31)2 type. 
 

     
Figure 12. Poincare iteration maps: (a) for 4131 dynamics, and (b) for (31)2 
dynamics of the Model(1-15). 
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Between these two states, chaotic one was obtained and its iteration map is 
given in Figure 13. The position of the fixed point is identified in the crosspoint 
of the main diagonal (blue line) and imaginary line connecting the points on the 
iteration map. The fixed point corresponds to the point where the closed orbit 
(limit cycle) intersects the corresponding Poincare section. The slope of the 
tangent line (red line) in the fixed point is the criterion determining the stability 
of the limit cycle for the particular value of the control parameter. If the 
absolute value of the slope is higher than one the limit cycle is unstable and 
chaotic attractor is born. 
 

 
 

Figure 13. Poincare iteration map for chaotic dynamics of the Model(1-15) 
obtained with control parameter values between the ones used in Figure 11 (a) 
and (b). 
 
 
Corresponding attractor of the iteration map given in Fig. 13 is given below, 
with enlarged part where Poincare section was made, Fig. 14. 
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Figure 14. The chaotic attractor (a) of the Model(1-15) corresponding to the 
iteration map given in Fig. 13. (b) Enlarged part of the attractor with indicated 
position of the Poincare section. 
 
Stability of the periodic orbit is global property of the dynamic system and its 
phase space. It may not be directly connected with steady state properties but 
rather with its manifold and trajectories over it. Hence, the transition to chaos is 
not generally the consequence of single dominating set of reaction steps, but 
rather of sequences of states laying on periodic orbit, where several sets of 
reactions subsequently dominate over others. 
 

3. Summary 
The stoichiometry of the Bray-Liebhafsky reaction corresponds to the 
hydrogen peroxide decomposition to water and oxygen in an acidic 
environment, in the presence of iodate ions as a catalyst. During this 
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reaction an oscillatory change of the intermediate species concentration, 
along with a cascade change in the hydrogen peroxide concentration and 
oxygen removal can be obtained. By selecting the experimental 
conditions, the simple periodic or complex chaotic concentration changes 
can be generated. Concentration oscillations are a consequence of 
alternating dominance of different reaction pathways present in the 
reaction mechanism. The spontaneous selforganized alteration of 
dominating reaction pathways was used in this paper to explain 
occurrence of simple and complex oscillations in this system. 
Fundamental importance of processes on multiple time scales was 
identified and demonstrated. 
 
Keywords: Linear and nonlinear reaction system, feedback, autocatalysis, 
autocatalator, Bray-Liebhafsky oscillatory reaction 
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Abstract

The paper offers a monographic approach to the direct finding of travelling wave
solutions. The basic tool will be the auxiliary equation, an equation whose known
solutions are used to express solutions of more complicated models. The main
question we are trying to answer is how the solutions depend on the choice of the
auxiliary equations and on the solving method. To effectively find these answers,
we will use the subequations that can be generated by a quite general auxiliary
equation, and, as a solving method, the functional expansion, an approach that
generalizes the G’/G technique. The investigated model will be the Benjamin-
Bona-Mahony (BBM ) equation, a model belonging to a general class of higher
order PDEs with travelling wave solutions, and interesting classes of rational,
hyperbolic or periodic solutions will be generated for it.

Keywords: travelling waves, auxiliary equation technique, functional
expansion, BBM model.

1. Introduction

Since under real circumstances most of the physical phenomena are nonlin-
ear, the nonlinear dynamics represent an important issue in understanding
the most fascinating phenomena which occur in nature. The most suit-
able mathematical tool which allows describing such phenomena in many
space-time dimensions is represented by the nonlinear partial differential
equations (NPDEs). They allow modelling phenomena as wave propaga-
tion through optical fibres [1], heat or fluid diffusion [2].
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Solving NPDEs became perhaps the most challenging and the most
highly promising area in modern mathematics. Numerical techniques [3] are
often made use of in order to solve them, but scientists and engineers also
show an increasing interest in developing analytical techniques.Therefore
during the recent years some important progresses have been achieved and
many powerful and effective methods have been created in order to derive
explicit solutions. There are some rigorous methods, for example the in-
verse scattering [4], the Hirota bilinear formalism [5, 6], the super-bilinear
formalism [7, 8], the Lax Pair [9] or the Lie symmetry method [10, 11, 12].
We will focus in this paper on another class of solving methods, more direct
and simple to apply, methods based on the use of the auxiliary equation
technique. These methods are supposed to look for solutions of complicated
NPDEs in terms of the known solutions of an ”auxiliary equation” and they
originate from the extension of the tanh-methods [13, 14] to the whole class
of solutions of the Riccati equation. This was the first auxiliary equation
used, followed by the Jacobi elliptic equation [15]. As we will illustrate,
other simple or more complex equations are quite often chosen as auxiliary
equations.

Beyond the choice of the auxiliary equation, a second key issue in ap-
plying the auxiliary equation technique is related to the explicit mathe-
matical expressions that we choose in order to construct the NPDEs so-
lutions in terms of the auxiliary equation solutions. There are many pro-
posed approaches from this perspective and we can cite: the generalized
Kudryashov method [16, 17], the (G′/G)-expansion method [18], its exten-
sion to the functional expansion method [19], as well as other investigation
tools [20, 21], including methods applied to mechanical models from field
theory [22]. Many of the above mentioned methods do allow the construc-
tion of the travelling wave solutions of the NPDEs, solutions that have
attracted the attention of many researchers. This is why the focus of this
paper will be on how travelling waves can be obtained using a very gen-
eral approach, based on the auxiliary equation technique, the functional
expansion. Moreover, an important purpose will be to investigate how
these solutions depend on the choice of the auxiliary equation, a question
not tackled by the papers published so far. For answering, we will use a
quite complex auxiliary equation that, depending on the values given to
the parameters appearing in it, could reduce to many sub-equations. The
BBM solutions will be pointed out and compared among them for two such
sub-equations.

The paper is organized as follows: in Section 2 we present the investi-
gated model and the whole hierarchy of equations that generalizes it. In
Section 3, we outline how the auxiliary equation method can be used and
we give a few examples of auxiliary equations that are used in various pa-
pers. The focus will be on the equation we are going to use. In Section 4
we effectively point out the BBM solutions in two specific cases. The paper
ends with some essential facts on how the solutions are looking and what
are their specificity.
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2. The BBM model and its generalizations

The first equation describing travelling waves in shallow water was proposed
by Boussinesq in 1877 and rediscovered by Diederik Korteweg and G. de
Vries in 1895. It is known as the Korteweg-de Vries (KdV) equation and
has the form:

ut + uxxx + 6uux = 0.

For a relatively long period of time, KdV was considered as the only equa-
tion with these peculiar solutions called solitons. Later, it was realized
that a large number of equations could accept similar solutions. Among
the first such equations, the Regularized Long-Wave (RLW) Equation was
proposed. It is also known as Benjamin-Bona-Mahony (BBM) Equation
and describes the small-amplitude long wave of water in a channel. The
mathematical form of this equation is:

ut + ux + uux − uxxt = 0 (1)

The equation (1) was quickly extended towards a larger class of equations,
as for example the Camassa-Holm equation, proposed for modelling the
unidirectional propagation of irrotational water wave over a planar wall:

ut + 2kux − uxxt + 3uux − 2uxuxx − uuxxx = 0

Here k is a constant related to gravity and to the initial undisturbed water
depth.

Another equation, known as the Rosenau equation [23], was proposed
for describing the wave-wave and wave-wall interactions for which KdV
equation is not working:

ut + ux + uux + uxxxt = 0. (2)

The previous equation was upgraded to a 5th order equation, as solitonic
equation, and the Rosenau-RLW equation arisen when the term −uxxt from
BBM was included in the Rosenau Equation:

ut − uxxt + uxxxxt + ux + uux = 0. (3)

Further extensions that are now used for describing better the behaviour
of the nonlinear waves:

� the generalized Rosenau-RLW Eq. [24]:

ut − uxxt + uxxxxt + ux + umux = 0, (m ≥ 1, positive integer)

� the Rosenau-KdV [25] equation includes the viscous term uxxx in the
Rosenau equation (2):

ut + uxxxt + uxxx + ux + uux = 0 (4)
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� the Rosenau-KdV-RLW [26] equation couples the above Rosenau-
RLW and Rosenau-KdV Equations:

ut − uxxt + uxxxxt + uxxx + ux + uux = 0

� the Kawahara equation [27] arose in the theory of shallow water waves
with surface tension:

ut + ux + uux + uxxx− uxxxxx = 0

� the Rosenau-Kawahara equation [28] arose by adding another viscous
term, −uxxxx, to the Rosenau-KdV equation, (4):

ut + ux + uux + uxxx + uxxxt − uxxxxx = 0

� the generalized Rosenau-Kawahara Equation:

ut + aux + bmux + cuxxx + λuxxxxt − vuxxxxx = 0. (5)

Here a, b, c, λ, v are real constants; m is a positive integer, which indi-
cates the power law nonlinearity.

� the generalized Rosenau-Kawahara-RLW equation [29]:

ut + aux + bumux + cuxxx − αuxxt + λuxxxxt − vuxxxxx = 0.

It is obtained by coupling the generalized Rosenau-RLW equation (3)
and the generalized Rosenau-Kawahara equation (5).

As we already mentioned, we will investigate the BBM model given by
(1). Despite the numerous studies on the BBM equation and of the various
techniques used for solving it, it seems that the model contains a much
richer phenomenology.

3. The auxiliary equation techniques

The travelling waves represent an important class of solutions for mathe-
matical models in the field of nonlinear dynamics.The algorithm for finding
travelling waves supposes three important steps: (i) reduction of the in-
vestigated NPDE to an ordinary differential equation (ODE); (ii) choice
of an adequate auxiliary equation, a supplementary equation with known
solutions; (iii) expressing the solutions for the investigated ODE in terms
of those of the auxiliary equation. In this section we will follow the first
two steps from the mentioned algorithm. The third step will be presented
in the next section.

Let us consider the dependent variable u(x, t) defined in a 2D space
(x, t) satisfying the PDE:

F (u, ut, ux, uxx, utt, ..) = 0. (6)
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The equation (6) can be transformed into an ODE by the use of the wave
variable, joining the two coordinates (x, t) with the wave velocity, V :

ξ = x− V t. (7)

The ODE we have to solve now has the generic form:

∆(u, u′, u′′, · · · ) = 0; u′ = du(ξ)/dξ. (8)

For solving (8), we consider that its solutions could be expressed in terms
of the known solutions G(ξ) of an auxiliary equation of the form:

Θ(G,G′, G′′, · · · ) = 0. (9)

We will write down here examples of auxiliary equations usually met in lit-
erature. The most classical example is represented by the Riccati equation:

G′ = q0 + q1G+ q2G
2. (10)

The Jacobi elliptic equation is also very often used, because of its general
and well classified solutions:

G′2 = P (G) = c0 + c2G
2 + c4G

4 + c6G
6. (11)

The both previous examples are first order differential equations. Second
order equations represent very interesting cases of auxiliary equations, al-
lowing more sophisticated choices for the solutions we are looking for. The
most frequent examples met in various papers are the following:

G′′ + λG′ + µG = 0, (12)

G ·G′′ −B ·G′2 − F ·G ·G′ −H ·G2 = 0. (13)

As we are interested in quite complex auxiliary equations, we decided to
use here (13), containing three parameters B, F, H. This is why we will
list now, for the future use, the main solutions of this equation [30]:

� If F 2+4H(1−B) > 0, the equation (13) admits hyperbolic solutions:

G(ξ) =
[
eFξ/2

(
C1e

√
F 2+4H(1−B)ξ/2 + C2e

−
√

F 2+4H(1−B)ξ/2
)] 1

1−B

(14)

� If F 2 + 4H(1−B) < 0, the equation (13) admits periodic solutions:

G(ξ)=

[
e

Fξ
2

(
C1 sin

√
−F 2−4H(1−B)

ξ

2
+C2 cos

√
−F 2−4H(1−B)

ξ

2

)] 1
1−B

(15)

� If F 2 + 4H(1−B) = 0, we will have rational solutions for (13):

G(ξ) =
[
e

Fξ
2 (C1ξ + C2)

] 1
1−B

. (16)
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4. Solutions for the BBM model through the functional ex-
pansion method

The third step of the solving algorithm mentioned in the previous section
asks for expressing the solutions u(ξ) of (8) in terms of the solutions G(ξ)
of the auxiliary equation. Usually, we do that in the form:

u(ξ) =
m∑

i=−m

Pi(G)H i(G,G′, G′′, · · · ). (17)

Here Pi(G) are 2m+ 1 functionals depending on G(ξ) and that have to be
determined. The value of the parameter m depends on the model and it is
established through a balancing procedure among the terms of higher order
derivative, respectively of the higher nonlinearity.

The functional expansion method, proposed in [21], supposes to have:

u(ξ) =
M∑
i=0

Pi(G)(G′)i = P0 + P1G
′ + ...+ PM (G′)M (18)

where G′ ≡ dG
dξ . The functionals Pi(G), i = 1, ...,M , can be found by

solving the determining system generated when (18) is introduced in the
ODE (8).

Let us apply the technique for finding analytic solutions for the BBM
model described by the equation (1). Considering the transformation (7),
this equation becomes the following ODE:

2V uξξ + u2 + 2(1− V )u+ 2C = 0, (19)

where C is a constant of integration and V is the velocity (real constant).
In this specific case, the parameter from (18) takes the value M = 2, and
this expansion becomes:

u(ξ) = P0(G) + P1(G)Gξ + P2(G)(Gξ)
2. (20)

We will consider that G(ξ) is the solution of the auxiliary equation:

GGξξ −BG2
ξ − FGGξ −HG2 = 0. (21)

Taking into consideration the relations (19), (20) and (21), collecting G′,
(G′)2, (G′)3, (G′)4 and putting the coefficients to zero, we get a general
system of equations which should allow us to determine the functionals
{Pi, i = 0, 1, 2}.
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The system has the form:

2C + 2P0 − 2V P0 + P 2
0 + 2FHV GP1 + 4H2V G2P2 + 2HVGP0

′ = 0

−P1 + V P1 − F 2V P1 −HV P1 − 2BHV P1 − P0P1 − 6FHV GP2 −
− FV P ′

0 − 3HVGP ′
1 = 0

−6BFV P1 −GP 2
1 − 2GP2 + 2V GP2 − 8F 2V GP2 − 4HVGP2 −

−16BHV GP2 − 2GP0P2 − 2BV P ′
0 − 6FV GP ′

1 − 10HVG2P ′
2 −

− 2V GP ′′
0 = 0,

−BV P1 + 2B2V P1 + 10BFV GP2 +G2P1P2 + 3BV GP ′
1 +

+ 5FV G2P ′
2 + V G2P ′′

1 = 0

−4BV P2 + 12B2V P2 +G2P 2
2 + 10BV GP ′

2 + 2V G2P ′′
2 = 0 (22)

We were not able to solve (22) in its most general form. This is way,
we considered the functionals P0, P1, P2 having the forms

P0 =
β0 + β1G+ β2G

2

α0 + α1G+ α2G2
,

P1 =
γ0 + γ1G

α0 + α1G+ α2G2
, (23)

P2 =
τ0

α0 + α1G+ α2G2
.

Here are the main results and the most interesting BBM solutions we got
for two specific cases:

Case I. B = 0, F ̸= 0, H = 0
The auxiliary equation (13) becomes:

Gξξ − FGξ = 0 (24)

If the constraint from below is satisfied, the system (22) can be solved and
gives the following expressions for the functionals:

(F 4 − 1)V 2 + 2V + 2C − 1 = 0, (25)

P0 = V − 1− F 2V, P1 =
24FV α2

α1 + 2α2G
, P2 = − 48V α2

2

(α1 + 2α2G)2
. (26)

It is interesting to note that, for α1 ̸= 0, the solution we get is more
general than the one given by the (G′/G)-approach. As we will see below,
unlike α2, the value of α1 will influence the form of the solutions, being
able to generate their translations. Note that for choosing the integration
constant C = 0, the wave velocity V is limited by the above constraint to
two possible expressions. By contrary, considering a non-zero C makes V
remain an arbitrary parameter.
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Figure 1: Plot of u(ξ) given by Eq. (28) for fixed V = 1, F = −1, α2 = 1
and α1 = 1, α1 = 5, α1 = 1000 (left); for fixed V = 1, F = −1, α1 = 1 and
α2 = 5, α2 = 100, α2 = 1000 (right).

Two important sub-cases have to be mentioned:
I.1 For F 2 > 0, the auxiliary equation (24) admits the solution:

G(ξ) = C2 + C1e
Fξ. (27)

The solution of (19) is:

u(ξ) = V − 1− F 2V +
24C1F

2V α2e
Fξ

α1 + 2α2(C2 + C1eFξ)
− 48C2

1F
2V α2

2e
2Fξ

[α1 + 2α2(C2 + C1eFξ)]2

(28)
For ξ = x− V t we obtain u(x, t) for BBM equation in (1).

From Figure 1 we can see the influence of the constants α1 and α2 on
the solutions. In the graph on the left, varying α1 we get quite important
translations, while, in the graph from the right, we note small effects of the
variation of α2.

I.2 For F 2 < 0, the auxiliary equation (24), admits the solution:

G(ξ) = eFξ/2(C1 sin∆ξ/2 + C2 cos∆ξ/2), ∆2 = −F 2 > 0. (29)

In this case the solution of (19) is:

u(ξ) = V − 1− F 2V +

+
12FV α2e

Fξ/2[(FC1 −∆C2) sin∆ξ/2 + (FC2 +∆C1) cos∆ξ/2]

α1 + α2eFξ/2(C1 sin∆ξ/2 + C2 cos∆ξ/2)
−

−12V α2e
Fξ[(FC1 −∆C2) sin∆ξ/2 + (FC2 +∆C1) cos∆ξ/2]2

α1 + α2eFξ/2(C1 sin∆ξ/2 + C2 cos∆ξ/2)2
. (30)

For ξ = x− V t we obtain u(x, t) for BBM equation in (1).
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Figure 2: Plot of u(ξ) given by Eq. (30) for fixed F 2 = −1, α1 = 3, α2 = 4,
and V = 1, V = 2, V = 3 (left); for fixed F 2 = −1, α1 = 300, α2 = 4, and
V = 1, V = 2, V = 3 (right).

Figure 2 shows that, in this case too, large values of α1 can generate
not only translations, but can change the profile of the solution.

Case II. B ̸= 0, F ̸= 0, H ̸= 0

The system (22) can be solved if the following relation is satisfied:

[(F 2 + 4(1−B)H)2 − 1]V 2 + 2V − 1 + 2C = 0. (31)

If we consider the integration constant C = 0, the condition for real ve-
locities is (F 2 + 4(1 − B)H)2 > 0. Solving (31), we obtain two possible
expressions for velocities in terms of F,B,H, from the auxiliary equation:

V1 =
1

F 2 + 4(1−B)H + 1
, V2 =

1

−F 2 − 4(1−B)H + 1
.

The auxiliary equation (13) takes now its most general form:

GξξG−BG2
ξ − FGGξ −HG2 = 0,

and the functionals from (22) are:

P0 = V−1−F 2V+8HV (1−B), P1 =
12FV (1−B)

G
, P2 = −12V (1−B)2

G2

II.1 For F 2 + 4H(1 − B) > 0, the auxiliary equation (21) admits the
solution (14). Using it, we get a solution of (19) in the form:

u(ξ) = V − 1− F 2V − 4HV (1−B) +

+
12C2V (F 2 + 4H(1−B)

C2 + C1e
√

F 2+4H(1−B)ξ
− 12C2

2V (F 2 + 4H(1−B)

[C2 + C1e
√

F 2+4H(1−B)ξ]2
(32)

For ξ = x− V t we obtain u(x, t) for BBM equation in (1).
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Figure 3: Plot of u(ξ) given by Eq. (32) for H = −1, F = −1, B = 2
and positive velocities V = 1, V = 5, V = 10 (left); negative velocities
V = −1, V = −5, V = −10 (right).
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Figure 4: Plot of u(ξ) given by Eq. (33) for H = 1, F = 1, B = 2 and
positive velocities V = 1, V = 5, V = 10 (left); Plot of u(x, t) where ξ =
x+ V/2, so for negative velocity V = −1/2 (right).

For fixed F,H,B, the increasing positive velocity leads to increasing
positive amplitude as shown in Figure 3. For negative velocities the bright
solitons become dark solitons.

II.2 For F 2 + 4H(1 − B) < 0, the equation (21) admits the solution
(15). In this case the solution of (19) is, after simplification:

u(ξ) = V − 1− F 2V − 4HV (1−B) + (33)

+
3V (C2

1 + C2
2 )(F

2 + 4H(1−B))

[C1 sin
√

−F 2 − 4H(1−B)ξ/2 + C2 cos
√
−F 2 − 4H(1−B)ξ/2]2

.

For ξ = x− V t we obtain u(x, t) for BBM equation in (1) (Fig. 4 (right).
As Figure 4 shows, for fixed F,H,B , we get periodic solutions with

negative or positive amplitudes. Depending on the values taken by the
velocities the solutions change the amplitude and the period.
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Figure 5: Plot of u(ξ) given by (34) for any H,F,B that satisfy F 2 +
4H(1−B) = 0 and positive velocities V = 1, V = 5, V = 10 (left); negative
velocities V = −1, V = −5, V = −10 (right).

II.3 For F 2 + 4H(1 − B) = 0, the auxiliary equation (21) admits the
solution (16). In this case the solution of (19) is, after simplification:

u(ξ) = V − 1− 12V C2
1

[C1ξ + C2]2
. (34)

Coming back to the initial variables (x, t), we obtain u(x, t) for BBM equa-
tion in (1). As in the previous case, for fixed F,H,B, we get unbounded
solutions whose amplitudes depend on the values of velocity (see Figure 5).

5. Conclusions

The paper pointed out travelling wave solutions for the BBM model, using
the auxiliary equation and the functional expansion techniques. The main
aim was to investigate how the travelling waves depend on the form of the
auxiliary equation. The conclusion is that, usually, the travelling waves
inherit important characteristics of the solutions accepted by the auxiliary
equation. It was possible to get hyperbolic or periodic solutions of BBM
starting from similar solutions of the considered auxiliary equation. With
the help of various chosen values for the parameters appearing both in
BBM and in the auxiliary equations, some kinds of exact travelling wave
solutions were represented. We illustrated how the parameters influence
the type and the shape of the solutions. In Case I. we considered the
dependency on the parameters α1 and α2 appearing in the functionals (26).
In Case II. we considered different values of the wave velocity which is in
fact expressed through the parameters B,F,H as shown in Eq. (31). The
graphical representations show a quite important dependency of the waves
amplitude on the propagation velocity. More general solutions than those
of the form (G′/G) were pointed out in Case I, with a reduced form of the
auxiliary equation.
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LESIA, Observatoire de Paris, 5 place Jules Janssen, 92195 Meudon, France

Milivoj Belić§
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Abstract

Observations in planetary magnetosheaths and in the solar wind reveal the
presence of Alfvén vortices as intermittent structures whose scales range from fluid
lengths down to few ion lengths, whose density and magnetic are compressible for
higher plasma β’s. We develop a hydrodynamic model of compressible magnetic
vortices in high-β plasmas with anisotropic temperature, with the size ranging from
fluid to ion scales. At magneto-fluid scales we find non-propagating field-aligned
cylindrical monopoles and inclined propagating dipoles, whose transverse magnetic
and velocity fluctuations are aligned, but not identical, and they have finite density
and compressible magnetic field fluctuations localized inside the vortex core. In
the presence of thermal anisotropy and acoustic effects, they may be correlated
or anti-correlated δn/δB∥ = constant ≷ 0; fluctuations whose velocity along the
magnetic field is below the ion thermal speed are always correlated. At ion or
kinetic scales (with the smallest radii ∼ c/ωpi, ρLi) and in the absence of acoustic
perturbations, only dipolar Alfvén vortices may exist, whose properties are similar
as those at fluid scales. We also find pressure balanced kinetic slow magnetosonic
dipoles, possessing finite E∥ and purely compressional magnetic field perturbation,
whose existence is facilitated by a strong ion temperature anisotropy.

PACS numbers: 52.35.Ra, 52.35.We, 94.05.Lk, 94.30.cj, 96.50.Ci

1. Introduction

Magnetic structures at ion break scale, commonly in the form of Alfvén
vortices with the diameter 10 − 30 times longer than the ion scales, have

* e-mail address: dusan.jovanovic@ipb.ac.rs
� e-mail address: olga.alexandrova@obspm.fr
� e-mail address: milan.maksimovic@obspm.fr
§ e-mail address: milivoj.belic@qatar.tamu.edu
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been observed in the solar wind and in the magnetosheaths of the Earth and
Saturn [1, 2, 3, 4]. Similar structures with the diameter comparable to ion-
acoustic Larmor radius, identified as drift-Alfvén vortices, were observed in
the Earth’s magnetospheric cusp [5] where plasma β (ratio of thermal and
magnetic pressures, β = 2p/c2ϵ0B

2) is much smaller. A statistical analysis
of magnetic fluctuations in the turbulent cascade at the ion spectral break,
detected in the slow and fast solar wind by the multi-spacecraft Cluster
mission [3, 6], showed that the intermittency of the magnetic turbulence is
due to the presence of various coherent structures. Compressible structures
in the slow wind are predominantly parallel perturbations of the magnetic
field (δB∥ ≫ δB⊥) in the form of magnetic holes, solitons and shock waves.
Coherent shear Alfvénic perturbations have been observed both in the slow
and the fast solar wind with βi ≳ 1 and βi ≲ 1. They appear either
as the current sheets or the vortex-like structures. Vortices with a larger
compressional magnetic field component, δB⊥ ≳ δB∥, have been observed
only in the slow wind. The compressible component δB∥ is localized within
the structure, while the torsional δB⊥ extends outside of the vortex core.

Shear Alfvén vortices were predicted theoretically by [7], who showed

that structures bigger than ion inertial length c/ωpi, ωpi = (n0e
2/miϵ0)

1/2,
could exist in plasmas with incompressible density (when β ≪ 1), when
nonlinear solutions are described by the Kadomtsev-Pogutse-Strauss’ re-
duced MHD (magnetohydrodynamic) equations [8, 9]. Solutions can be
nontravelling monopoles or propagating structures. A vortex moving rela-
tive to the plasma is always a dipole, but a monopole can be superimposed
to it.

We present a hydrodynamic theory of coherent vortices in space plasmas
with anisotropic electron and ion temperatures and arbitrary plasma β. We
generalize the shear-Alfvén description [7] by including the diamagnetic and
finite Larmor radius effects via Braginskii’s collisionless stress tensor, and
the compressional magnetic component via a generalized pressure balance.
We find a general reduced MHD vortex, whose torsional magnetic field
leaks outside of the vortex core while the compressional magnetic field is
restricted to its interior, which is why the latter may remain undetected by
a spacecraft. They possess also a finite density perturbation and parallel
fluid velocity that are proportional to the vorticity and the compressional
magnetic field. Conversely, in plasmas with β ≲ 1 and on a characteristic
length that on the ion-scale, we find two different particular dipole vortex
solutions that can be regarded as the generalizations of the Kadomtsev-
Pogutse-Strauss’ structures to smaller scales and of the nonlinear drift-
mode structures to the large-β plasmas, respectively. Generalized K-P-
S dipoles possess three components of the magnetic field and their phase
velocity along the ambient magnetic field lies in the Alfvén and the acoustic
ranges, u∥ ∼ (cA, cS). The slow magnetosonic dipoles that we are able to
study analytically propagate much slower, u∥ ≪ cA (the range of permitted
u∥ ≪ is broadened in the presence of ion temperature anisotropy), and their
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magnetic field perturbation is mostly compressional, viz. B⃗⊥ → 0.

2. Fluid theory of slow, weakly z-dependent nonlinear phe-
nomena in a warm plasma βi⊥ ∼ βe⊥ ∼ 1

We consider a collisionless plasma with the unperturbed density n0 im-
mersed in the homogeneous magnetic field e⃗zB0. We assume that the elec-
tron and ion temperatures can be anisotropic, i.e. that the temperatures
associated with the particles’ random motions along and perpendicularly
to the magnetic field may be different, Tj∥ ̸= Tj⊥ , where j = e, i and the

subscripts ∥ and ⊥ denote the components parallel and perpendicular to
the magnetic field, respectively. The hydrodynamic equations of continuity
and momentum for each of the species have the form(

∂

∂t
+ U⃗ · ∇

)
n+ n∇ · U⃗ = 0, (1)(

∂

∂t
+ U⃗ · ∇

)
U⃗ =

q

m

(
E⃗ + U⃗ × B⃗

)
− 1

mn
∇ · (P + π) , (2)

where, for simplicity, we have omitted the subscripts e and i referring to

the electrons and ions, respectively. In the above, n, U⃗ , q, and m are
the number density, fluid velocity, charge, and mass, respectively. The
pressure P and the stress π are diagonal and off-diagonal tensors. Using
the standard shorthand notation, the pressure tensor in the case of an

anisotropic temperature is given by P = p⊥(I − b⃗ b⃗) + p∥⃗b b⃗ where I is a

unit tensor, viz. Iα,β = δα,β and δα,β is the Kronecker delta, and b⃗ b⃗ stands

for the dyadic product, whose components are given by (⃗b b⃗)α,β = bαbβ.

Here b⃗ is the unit vector parallel to the magnetic field, b⃗ = B⃗/B, B is

the intensity of the magnetic field, B = |B⃗|, p∥ = nT∥, and p⊥ = nT⊥.
Likewise, the stress tensor is written as π = e⃗αe⃗β πα,β. These enable us to
use the standard formula from the tensor algebra ∇ · q⃗ r⃗ = (∇ · q⃗ + q⃗ · ∇)r⃗,
and to write the divergence of the pressure and the stress tensors as

∇ · P = ∇p⊥ + b⃗
(⃗
b · ∇

) (
p∥ − p⊥

)
+
(
p∥ − p⊥

) (
∇ · b⃗+ b⃗ · ∇

)
b⃗, (3)

∇ · π = e⃗β (e⃗α · ∇)πα,β + πα,β (∇ · e⃗α + e⃗α · ∇) e⃗β. (4)

The endmost terms on the right-hand-sides in the abov arise from the cur-
vature of magnetic field lines. For convenience, we introduce the notation
(∇ · π)curv = πα,β (∇ · e⃗α + e⃗α · ∇) e⃗β. The chain of hydrodynamic equa-
tions is truncated by using the Braginskii’s collisionless (nongyrotropic)
stress tensor [10], which is appropriate for perturbations that are weakly
varying both on the timescale of the gyroperiod and on the perpendicular
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scale of the Larmor radius. Within the adopted large scale limit, Bragin-
skii’s stress tensor has been generalized to plasmas with anizotropic tem-
perature [11, 12]. Following these, we neglect the heat flux and use instead
generic equations of state

dp⊥/p⊥ = γ⊥ dn/n, dp∥/p∥ = γ∥ dn/n, (5)

in which the multipliers γ∥ and γ⊥ are some functionals of the plasma
density, see [13]where polytropic indices for collisionless plasmas were de-
rived. We consider regimes in which the perturbations of the density and
of the magnetic field are not too large, see Eq. (10), which permits us to
make an estimate of the functionals γ∥ and γ⊥ from the linearized Vlasov
equation. These are further simplified under the drift scaling and for weak
dependence along magnetic field lines, (10), when γ∥ reduces to a constant,
viz. γ∥ = 3 if uz > vT∥ and the process can be considered as adiabatic,
and to γ∥ = 1 when uz ≪ vT∥ , i.e. the process is isothermal. Likewise,

the perpendicular functional reduces to γ⊥ = 1 for arbitrary uz/vT∥ if the
characteristic perpendicular size of the solution is much bigger than the
Larmor radius. Conversely, for solutions whose transverse scale approaches
the ion scales, γ⊥ can be approximated by a constant only in a limited
number of cases. These include the shear Alfvén solution with zero parallel
electric field, E∥ = 0, decoupled from acoustic perturbations, uz > vT i∥,⊥ ,
for which γi⊥ = 2, and the kinetic slow magnetosonic mode solution whose

torsion of the magnetic field is absent, δB⃗⊥ = 0, realized in the regime
cA > uz > vT i∥,⊥ in which the coupling with acoustic perturbation is neg-
ligible and we also have γi⊥ = 2.

The system of equations is closed by the Faraday’s and Ampere’s laws

∇× E⃗ = −∂B⃗
∂t
, ∇× B⃗ =

1

c2

(
∂E⃗

∂t
+
j⃗

ϵ0

)
. (6)

The latter is simplified on temporal scales that are slow compared to the
electron plasma frequency ωpe =

√
n0e2/meϵ0 and spatial scales that are

long compared to the electron Debye length λDe = vTe/ωpe, when we can
neglect both the charge separation and the displacement current, yielding

ne = ni ≡ n,
n

n0

(
U⃗i − U⃗e

)
=

e

me

c2

ω2
pe

∇× B⃗. (7)

We consider single-charged ions, viz. qi = −qe = e.
For later reference, we write also the parallel momentum equation, that
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is obtained when we multiply the momentum equation with b⃗ · , viz.(
∂

∂t
+ U⃗ · ∇

)
U∥ −

q

m
b⃗ ·
(
E⃗ − 1

qn
∇p∥ +

p∥ − p⊥

qnB
∇B

)
+

1

mn

[
∂πα,b
∂xα

+ b⃗ · (∇ · π)curv
]
= U⃗⊥ ·

(
∂

∂t
+ U⃗ · ∇

)
b⃗, (8)

where U∥ = b⃗ · U⃗ . Likewise, the perpendicular momentum equation for the
plasma fluid has the form

∇⊥

(
c2ϵ0

B2

2
+ pe⊥ + pi⊥

)
= ϵ0

[
E⃗⊥

(
∇ · E⃗

)
+Bb⃗× ∂E⃗

∂t

]
+

b⃗×
{
b⃗×

[
mene

(
∂

∂t
+ U⃗e · ∇

)
U⃗e +mini

(
∂

∂t
+ U⃗i · ∇

)
U⃗i

]}
+(

c2ϵ0B
2 − pe∥ − pi∥ + pe⊥ + pi⊥

) (⃗
b · ∇

)
b⃗−∇ ·

(
πeα,β

+ πiα,β

)
. (9)

In the quasineutrality regime (i.e. on the adopted scales bigger than the

Debye length λDe), Eq.(7) is simplified by setting ∇·E⃗ = e(ni−ne)/ϵ0 = 0.
Eqs. (1), (2), (8), and (9) are vastly simplified under the drift scaling and
in the regime of small perturbations of the density and of the magnetic
field, and of the weak dependence along the magnetic field line

1

Ω

∂

∂t
∼ 1

Ω
U⃗ · ∇ ∼ ϵ≪ 1, and

δn

n
∼ |δB⃗|

|B⃗|
∼ b⃗ · ∇

∇⊥
∼ ϵ. (10)

Here, Ω is the gyrofrequency, Ω = qB/m, and δ denotes the deviation of a
quantity from its unperturbed value. The explicit form of the collisionless
stress tensor π in a plasma with anisotropic temperature can be seen e.g.
in Refs. [11]where it has been calculated under the scaling (10), with the
accuracy to the the first order in the FLR (finite-Larmor-radius) correc-
tions, and expressed in the local orthogonal coordinate system with the
curvilinear b-axis along the magnetic lines of force

πm,m = −πl,l = (p⊥/2Ω) (∂Ul/∂xm + ∂Um/∂xl) ,

πl,m = πm,l = (p⊥/2Ω) (∂Ul/∂xl − ∂Um/∂xm) ,

πl,b = πb,l = − (p⊥/Ω) (∂Ub/∂xm)−
[(
2p∥ − p⊥

)
/Ω
]
(∂Um/∂xb) ,

πm,b = πb,m = (p⊥/Ω) (∂Ub/∂xl) +
[(
2p∥ − p⊥

)
/Ω
]
(∂Ul/∂xb) ,

πb,b = 0. (11)

Here b⃗, e⃗l, and e⃗m are three mutually perpendicular unit vectors and
∂/∂xα ≡ e⃗α · ∇, where α = l,m, b. We adopt the last two vectors as
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e⃗l = b⃗ × (e⃗x × b⃗)/|e⃗x × b⃗| and e⃗m = b⃗ × e⃗l. In the regime of a weak cur-
vature of magnetic field lines, Eq. (10), these unit vectors are properly
approximated by the expressions given in Eq. (26) below.

The perpendicular component of the fluid velocity is obtained after

we multiply Eq. (2) with b⃗×, and can be readily written as the sum of

the E⃗ × B⃗, diamagnetic, anisotropic-temperature, and polarization drifts,
together with the leading part and the curvature correction of the stress-

related (or the FLR) drift, U⃗⊥ = U⃗E + U⃗D + U⃗A + U⃗p + U⃗π + δU⃗π, where

U⃗E = − b⃗

B
× E⃗, U⃗D =

b⃗

qnB
×∇⊥p⊥, U⃗A =

(
p∥ − p⊥

) b⃗

qnB
×
(⃗
b · ∇

)
b⃗,

U⃗B =
p⊥b⃗

qnB2
×∇⊥B, U⃗p =

b⃗

Ω
×
(
∂

∂t
+ U⃗ · ∇

)
U⃗ ,

U⃗π =
b⃗

qnB
× e⃗β

∂πα,β
∂xα

, δU⃗π =
b⃗

qnB
× (∇ · π)curv . (12)

For completeness, in the above list we have added also the grad-B drift

velocity U⃗B. Using Eq. (11), the stress-related drift and the leading contri-
bution of the stress to the parallel momentum equation (8) take the form:

U⃗π = − T⊥
2mΩ2

∇2
⊥U⃗⊥ −

1

qnB

{[(⃗
b×∇⊥

p⊥
2Ω

)
· ∇⊥

]
b⃗× U⃗⊥ +

(
∇⊥

p⊥
2Ω

· ∇⊥

)
U⃗⊥+ (13)(⃗

b · ∇
)[p⊥

Ω
∇⊥U∥ +

2p∥ − p⊥

Ω

(⃗
b · ∇

)
U⃗⊥

]}
, (14)

∂πα,b
∂xα

= b⃗ ·
{
∇⊥U∥ ×∇⊥

p⊥
Ω

−∇⊥ ×
[
2p∥ − p⊥

Ω

(⃗
b · ∇

)
U⃗⊥

]}
. (15)

In the regime of slow variations (compared to Ω), weak dependence along
the magnetic field lines, and small perturbations of the magnetic field in
all spatial directions, that is described by the scalings Eqs. (10), we can
neglect the last term in Eq. (14) that contains the second parallel derivative
(∂/∂xb)

2. The contribution of the magnetic curvature to the divergence of
the stress tensor is a small quantity of the order ϵ2ρ2L∇2, viz.

(∇ · π)curv = πα,b

(
∂b⃗/∂xα

)
− b⃗ πα,β

[
e⃗β ·

(
∂b⃗/∂xα

)]
+O

(
ϵ3
)
, (16)

and using Eqs. (11) and the approximations in Eq. (26), we obtain the
following leading-order expressions:

δU⃗π = e⃗α⊥ ρ
2
L

(
∂b⃗

∂xα⊥

· ∇U∥

)
, b⃗ · (∇ · π)curv = qn0ρ

2
L

∂U⃗⊥
∂xα⊥

·∇⊥
∂Az

∂xα⊥

,

(17)
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where ρL =
√
T⊥/mΩ2

0 is the (unperturbed) Larmor radius and α⊥ = x, y.

The leading order (in ϵ) stress-related drift U⃗π+δU⃗π is given by the first

term on the right-hand-side of Eq. (14). As the polarization drift U⃗p and

the curvature related drifts U⃗A and δU⃗π are small compared to the E⃗ × B⃗

and diamagnetic drifts and noting that ∇ · (U⃗E + U⃗D) = O
(
ϵ2
)
, see Eq.

(20), to leading order in ϵ we can write U⃗⊥ ≈ U⃗E + U⃗D − ρ2L∇2
⊥U⃗⊥/2, that

is formally solved as U⃗⊥ ≈ U⃗apr
⊥ , where

U⃗apr
⊥ ≡

(
1 + ρ2L∇2

⊥/2
)−1

(
U⃗E + U⃗D

)
. (18)

Within the adopted accuracy, this expression for U⃗⊥ can be used on the
right-hand-sides of Eqs. (12)–(15) and (19). Likewise, in the convective

derivatives we use U⃗ ·∇ ≈ U⃗⊥ ·∇⊥ ≈ U⃗apr
⊥ ·∇⊥. Under scaling (10) we can

also neglect the right-hand-side of Eq. (8). On the right-hand-side of Eq.
(9) we neglect the second-order terms coming from the polarizaton, charge
separation, displacement current and the curvature of the magnetic field.
Only the leading part of the last term remains and the equation simplifies:

∇⊥

(
c2ϵ0B

2

2
+ pe⊥ + pi⊥

)
= −b⃗×

(
pi⊥
2Ωi

∇2
⊥U⃗i⊥ +

pe⊥
2Ωe

∇2
⊥U⃗e⊥

)
, (19)

which reduces to the equation of pressure balance when the Larmor radius
corrections can be neglected. Now, using

∇ ·
(
U⃗E + U⃗D

)
≈−

[
∂

∂t
+
(
U⃗E + U⃗D

)
· ∇⊥

]
logB − (20)(

U⃗E + U⃗D

)
·
(⃗
b · ∇

)
b⃗−

(⃗
b×∇p⊥

)
· ∇n
qn2B

,

∇ · U⃗A ≈
(⃗
b · ∇

)[p∥0 − p⊥0

qn0B0
∇ ·
(
e⃗z × b⃗

)]
, (21)

and Eqs. (14), (16) for ∇ · U⃗π, we evaluate continuity and parallel momen-

tum equations to leading order in ϵ setting U⃗ ·∇ ≈ U⃗apr
⊥ ·∇⊥ and U⃗⊥ ≈ U⃗apr

⊥ ,
and dropping the last term on the right hand side of Eq. (20) that vanishes
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if p⊥ is a function of n, described by Eq. (5) when γ⊥ = γ⊥(n). We obtain:(
∂

∂t
+ U⃗apr

⊥ · ∇⊥

)
log

n

B
+
(⃗
b · ∇

)[
U∥ +

p∥0 − p⊥0

qn0B0
∇ ·
(
e⃗z × b⃗

)]
+

1

Ω0
∇⊥ ·

{[
∂

∂t
+
(
U⃗apr
⊥ + U⃗B − U⃗D

)
· ∇⊥

]
e⃗z × U⃗apr

⊥

}
+

ρ2L

(
∇2

⊥b⃗ · ∇U∥ − b⃗ · ∇∇2
⊥U∥

)
= 0, (22)[

∂

∂t
+
(
U⃗apr
⊥ + U⃗B − U⃗D

)
· ∇
]
U∥ =

q

m

(
b⃗ · E⃗ − ρ2L

∂U⃗apr
⊥

∂xα⊥

· ∇⊥
∂Az

∂xα⊥

)
−

b⃗

n0m
· ∇
[
p∥ −

(
p∥0 − p⊥0

) B
B0

+
2p∥0 − p⊥0

Ω0
∇⊥ ·

(⃗
b× U⃗apr

⊥

)]
. (23)

Momentum equation for the plasma fluid is obtained by multiplying the
electron and ion momentum equations respectively by me and mi and
adding, which in the limit of massless electrons me → 0 gives

[
∂

∂t
+
(
U⃗apr
i⊥

+ U⃗iB − U⃗iD

)
· ∇
]
Ui∥ = −ρ2Li

qi
mi

∂U⃗apr
i⊥

∂xα⊥

· ∇⊥
∂Az

∂xα⊥

−

1

n0mi

(⃗
b · ∇

)[
pi∥ + pe∥ −

(
pi∥0 − pi⊥0

+ pe∥0 − pe⊥0

) B

B0
+

2pi∥0 − pi⊥0

Ωi0

∇⊥ ·
(⃗
b× U⃗apr

i⊥

)]
. (24)

Within the drift- and small-but-finite FLR scalings, Eq. (10), and taking

that δB⃗∥ ≯ δB⃗⊥, the electromagnetic field can be expressed in terms of the
electrostatic potential and of the z-components of the vector potential and
magnetic field, ϕ, Az, and δBz, viz.

E⃗ = −∇ϕ− ∂

∂t

(
e⃗zAz + e⃗z ×∇ ∇−2

⊥ δBz

)
, B⃗ = e⃗z (B0 + δBz)− e⃗z×∇Az,

(25)
which yields the following expressions, accurate to first order:

b⃗ = e⃗z −
1

B0
e⃗z ×∇⊥Az, e⃗l = e⃗x −

b⃗

B0

∂Az

∂y
, e⃗m = e⃗y +

b⃗

B0

∂Az

∂x
, (26)

B = |B⃗| = B0 + δBz, b⃗ · E⃗ = −b⃗ · ∇ϕ− ∂Az

∂t
, b⃗× E⃗ = −e⃗z ×∇ϕ, (27)

We conveniently rewrite our basic equations in a dimensionless form using
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the following scaled variables and parameters

t′ = ω t, x′ = k x, y′ = k y, z′ = (ω/cA) z, ϕ
′ =

k2ϕ

B0ω
, A′

z =
k2cAAz

B0ω
,

B′
z =

Ωi0

ω

δBz

B0
, n′ =

Ωi0

ω

δn

n0
, U ′

∥ =
ωpi

ω

U∥

c
, p′ =

k2

Ωi0ω

δp

n0mi
,

β =
2p0

c2ϵ0B2
0

, d ′
e =

c k

ωpe
, d ′

i =
c k

ωpi
, ρ′i = k ρLi = d ′

i

√
βi⊥
2
, (28)

where k and ω are some characteristic wavenumber and characteristic fre-
quency, i.e. the inverse characteristic spatial and temporal scales, such as
the width of the structure r0 and the transit time r0/u⊥, u⊥ being the
speed of its propagation in the plasma frame transversely to the magnetic
field. The normalization through k, ω is used for convenience and does not
infer any presence of wave phenomena. Other notations are standard.

The dimensionless versions of the charge continuity (the difference of the
ion and electron continuity equations with electron polarization and FLR ef-
fects neglected), the electron continuity and parallel momentum equations,
Eqs. (22) and (23), and of the parallel and perpendicular fluid momentum
equations (24) and (19), can be written as follows (for simplicity, here and
in the rest of the paper, we omit the primes):[
e⃗z ×∇⊥

(
pi⊥ − ρ2i∇2

⊥ϕ/2

1 + ρ2i∇2
⊥/2

+ pe⊥

)]
· ∇⊥ (n−Bz)−[

∂

∂z
− (e⃗z ×∇⊥Az) · ∇⊥

](
1−

βi∥ − βi⊥ + βe∥ − βe⊥
2

)
∇2

⊥Az −

∇⊥ ·
({

∂

∂t
+

[
e⃗z ×∇⊥

(
ϕ− ρ2i∇2

⊥pi⊥/2

1 + ρ2i∇2
⊥/2

+
βi⊥
2

d2iBz

)]
· ∇⊥

}
×

∇⊥
ϕ+ pi⊥

1 + ρ2i∇2
⊥/2

)
− ρ2i

(
e⃗z ×∇⊥∇2

⊥Az

)
· ∇⊥Ui∥ −

ρ2i

[
∂

∂z
− (e⃗z ×∇⊥Az) · ∇⊥

]
∇2

⊥Ui∥ = 0, (29)

{
∂

∂t
+ [e⃗z ×∇⊥ (ϕ− pe⊥)] · ∇⊥

}
(n−Bz) + (30)[

∂

∂z
− (e⃗z ×∇⊥Az) · ∇⊥

](
Ue∥ −

βe∥ − βe⊥
2

∇2
⊥Az

)
= 0, (31)

[
∂

∂z
− (e⃗z ×∇⊥Az) · ∇⊥

](
ϕ− pe∥ +

βe∥ − βe⊥
2

d2iBz

)
+
∂Az

∂t
= 0, (32)
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{
∂

∂t
+

[
e⃗z ×∇⊥

(
ϕ− ρ2i∇2

⊥pi⊥/2

1 + ρ2i∇2
⊥/2

+
βi⊥
2

d2iBz

)]
· ∇⊥

}
d2iUi∥ =

−
[
∂

∂z
− (e⃗z ×∇⊥Az) · ∇⊥

]
×[

pi∥ + pe∥ −
βi∥ − βi⊥ + βe∥ − βe⊥

2
d2iBz −

(
2βi∥
βi⊥

− 1

)
ρ2i∇2

⊥ (ϕ+ pi⊥)

1 + ρ2i∇2
⊥/2

]
−

ρ2i

(
e⃗z ×∇⊥

∂

∂xα⊥

ϕ+ pi⊥
1 + ρ2i∇2

⊥/2

)
· ∇ ∂Az

∂xα⊥

, (33)

d2iBz + pi⊥ + pe⊥ −
ρ2i∇2

⊥ (ϕ+ pi⊥) /2

1 + ρ2i∇2
⊥/2

= 0, (34)

where we neglected the charge separation (ne = ni = n) and the displace-

ment current (U ′
e∥

− U ′
i∥

= ∇′
⊥
2A′

z), and we considered the electrons to be

massless (i.e. we took me → 0 and accordingly ω/Ωe = ρ′e = d′e = 0).
Pressure perturbations are expressed in terms of density via dimension-

less versions of the equations of state (5) viz.

p′j ζ = γj ζ (βj ζ/2) d
′
i
2
n′, where j = e, i and ζ = ∥,⊥. (35)

The acoustic perturbations, associated with the parallel plasma motion
described by the momentum equation (33), are coupled with the rest of
the system only through the last term in Eq. (29) that has come from the

divergence of the curvature correction to the FLR drift, ∇· δU⃗iπ. It will be
shown below that in the regimes of our interest this term is small, so that
the acoustic perturbations are fully decoupled. Eqs. (29)–(32) and (34)
constitute our basic set of equations for the functions ϕ,Az, Bz, and n.

Finding a general solution of the above equations is a formidable task,
but suitable particular solutions have been found in a number of relevant
cases. In our earlier papers we studied in electron-scale nonlinear struc-
tures in plasmas with cold electrons and very cold ions, βe⊥ ≪ 1 and
βi⊥ ≪ me/mi on the MHD temporal scale [14, 15]. In the warm plasma,
mostly electron scale structures were considered, such as whistler-frequency
perturbations in the regime βe⊥ ≳ 1 with immobile ions [16].

3. Vortex solutions approaching ion scales

When the plasma β is close to, or or bigger than, unity the dimensionless ion
Larmor radius becomes comparable and even bigger than the dimensionless
ion inertial length, when the reduced MHD equations do not provide an ac-
curate description. Below we construct a localized, stationary, 2-d solution
of the full system (29)-(34), assuming that its spatial extent is comparable
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with ion scales but much larger than the electron skin depth, d′e → 0. We
seek a solution that is travelling with the (non scaled) velocity u⃗⊥ = e⃗y k/ω
and is tilted to the z-axis by a small angle θ = ω/kuz, dependent only
on the variables x′ and y′ + (cA/uz) z

′ − t′. Then, the equations of parallel
electron momentum (32), electron continuity (31), parallel fluid momentum
(33), charge continuity (29), and pressure balance (34) can be cast as:

[e⃗z ×∇⊥ (ψ − x)] · ∇⊥

[
ϕ− pe∥ − x+ (1/2)

(
βe∥ − βe⊥

)
d2iBz

]
= 0, (36)

[e⃗z ×∇⊥ (ϕ− pe⊥ − x)] · ∇⊥ (n−Bz)−

[e⃗z ×∇⊥ (ψ − x)] · ∇⊥

{
V∥ +

(
c2A/u

2
z

) [
1− (1/2)

(
βe∥ − βe⊥

)]
∇2

⊥ψ
}
= 0,

(37)[
e⃗z ×∇⊥

(
Φ− pi⊥ + ρ2iBz − x

)]
· ∇⊥ d

2
iV∥ −(

c2A/u
2
z

)
[e⃗z ×∇⊥ (ψ − x)] · ∇⊥

[
pe∥ + pi∥−(

βe∥ − βe⊥ + βi∥ − βi⊥

) (
ρ2i /βi⊥

)
Bz −

(
2βi∥/βi⊥ − 1

)
ρ2i∇2

⊥Φ
]
=

−ρ2i
(
c2A/u

2
z

)
(e⃗z ×∇⊥ ∂Φ/∂xi) · ∇⊥∂ψ/∂xi, (38)

[
e⃗z ×∇⊥

(
−ρ2i∇2

⊥Φ/2 + pi⊥ + pe⊥
)]

· ∇⊥ (n−Bz) +(
c2A/u

2
z

) [
1− (1/2)

(
βe∥ − βe⊥ + βi∥ − βi⊥

)]
[e⃗z ×∇⊥ (ψ − x)] · ∇⊥∇2

⊥ψ +

ρ2i
(
e⃗z ×∇⊥V∥

)
· ∇⊥∇2

⊥ψ −
[
e⃗z ×∇⊥

(
Φ− pi⊥ + ρ2iBz − x

)]
· ∇⊥∇2

⊥Φ+

ρ2i [e⃗z ×∇⊥ (ψ − x)] · ∇⊥∇2
⊥V∥ =[

e⃗z ×∇⊥ (∂/∂xi)
(
ρ2iBz − pi⊥

)]
· ∇⊥ ∂Φ/∂xi, (39)

d2iBz + pi⊥ + pe⊥ − ρ2i∇2
⊥Φ/2 = 0, (40)

where, as before, we have omitted the primes and used the notations:

Φ =
(
1 + ρ2i∇2

⊥/2
)−1

(ϕ+ pi⊥) , ψ = (uz/cA) Az and V∥ = (cA/uz) Ui∥ .

(41)
Electron and ion pressures are related with the density by the equation of
state (35), pj ζ = γj ζ (βj ζ/2) d

2
in, where j = e, i and ζ = ∥,⊥. It is worth

noting that the linearized version of our basic equations (36)-(40) in the
regime of small but finite ion Larmor radius corrections, ρ2i∇2

⊥ ∼
√
ϵ < 1,

ρ4i∇4
⊥ ∼ ϵ → 0, and in the absence of acoustic perturbations that occurs

when uz > max (vT i⊥ ,
√γT i∥ vT i∥), reduces to(

∇2
⊥ − κ2

)
∇2

⊥ψ = 0, (42)
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where

κ2 =
2

ρ2i

(
1−

2u2z/c
2
A

2− βe∥ + βe⊥ − βi∥ + βi⊥

)
×1−

βe∥ − βe⊥
2

+

1 +
(
2− βe∥ + βe⊥

)
(4/βi⊥)

2− βe∥ + βe⊥ − βi∥ + βi⊥

 (43)

βe⊥ + βe∥

(
γe∥ − 1

)
+ βi⊥γi⊥

2 + βe⊥γe⊥ + βi⊥γi⊥
+
βe∥ − βe⊥

2


−1

.

The linear response has the form of waves when κ2 < 0. It consists of two
modes of waves, whose wavenumbers are equal to zero and to iκ. These
are identified as the large-β versions of the shear Alfvén wave (actually,
it features a finite perpendicular wavenumber on the electron scale, for a
simple example in the case of a very-low-β plasma see [14, 15]) and of the
kinetic slow mode, respectively. We expect that in the nonlinear regime
there may exist two nonlinear vortex modes analogous to these.

A simple analysis shows that the last term in Eq. (44) is strictly positive
when the ion temperature is anisotropic with βi∥ ≤ βi⊥ , if the parallel
electron temperature is not too high, βe∥ ≤ 2+βe⊥ , i.e. a kinetic slow wave

is evanescent (κ2 > 0) when its parallel phase velocity is sufficiently small,

u2z/c
2
A < 1−

(
βe∥ − βe⊥ + βi∥ − βi⊥

)
/2 ∼ O (1). (44)

For larger uz we have a propagating wave. Temperature anisotropies are
common in space plasmas - in the solar wind and Earth’s magnetosheath.

Seeking travelling/tilted solutions it is possible to integrate also the
parallel electron momentum equation (36), viz.

ϕ− x = pe∥ − (1/2)
(
βe∥ − βe⊥

)
d2iBz + F (ψ − x) , (45)

where F is an arbitrary function of the nonlinear characteristic ψ − x.
It is difficult to proceed further because solving Eq. (37) in a gen-

eral case is a formidable task. Likewise, Eqs. (38) and (39) contain
higher derivatives of unknown functions on their right hand sides and
are practically impossible to integrate. In particular, the coupling with
acoustic perturbation increases the complexity of our equations and makes
an analytic solution virtually impossible. For this reason, we will restrict
our study to the perturbations whose parallel phase velocity satisfies the
conditions (c2a/u

2
z)(βi⊥/2) ≲ (c2a/u

2
z)(γi∥βi∥/2) ∼ ϵ → 0 or equivalently

uz > max (vT i⊥ ,
√γi∥ vT i∥) when, according to Eq. (38), we can neglect

the parallel fluid velocity and set V∥ → 0.
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3.1. Large-β shear Alfvén, with δn/n0 = δBz/B0 and E∥ = 0

First, we adopt uz > max (vT i⊥ ,
√γi∥ vT i∥) ⇒ V∥ → 0, cf. Eq. (38),

and exclude acoustic waves from our analysis. In such regime, γi⊥ = 2
and γe⊥ = 1, see Eq. (5) and the subsequent discussion. An analytic
solution can be by the standard Larichev&Reznik procedure only in the
special case when the relative perturbations of density and compressional
magnetic field are equal (i.e. n = Bz in dimensionless units), when both
continuity equations (37) and (39) simplify to 2-D Euler equations, viz.

[e⃗z ×∇⊥ (ψ − x)] · ∇⊥∇2
⊥ψ = 0, and [e⃗z ×∇⊥ (Φ− x)] · ∇⊥∇2

⊥Φ = 0,
(46)

that can be readily integrated as

∇2
⊥ψ = G (ψ − x) , ∇2

⊥Φ = H (Φ− x) . (47)

G andH are arbitrary function of their argument, which we take to be part-
by-part linear, viz. G(ξ) = (ξ−ξ0)G1, with the constants ξ0 and G1 taking
different values ξin0 , G

in
1 and ξout0 , Gout

1 inside and outside, respectively, of a
(moving) vortex core defined by x2 + [y + (cA/uz) z − t]2 = r20. Obviously,
for a spatially localized solution we must have Gout

1 = 0, while Gin
1 will be

determined from the smoothness of the vector potential ψ (i.e. from the
absence of the z-component of the surface current) at the edge of the vortex
core. The function G(ψ−x), and consequently the parallel current −∇2

⊥ψ,
can have a finite jump for some value of ψ − x. Now we can readily write
the solution of the 2-d Euler equation (47) as a Chaplygin vortex, viz.

ψ (r, φ) =

 cosφ
(
r20/r

)
, r ≥ r0,

cosφ {r − (2r0/j1) [J1 (j1 r/r0) /J
′
1 (j1)]}+

ψ0 [J0 (j1 r/r0)− J0 (j1)] , r < r0,
(48)

The density n and the compressional magnetic field Bz are calculated from
the generalized pressure balance (40), viz.

n = Bz = (1 + βi⊥ + βe⊥/2)
−1 (βi⊥/4) ∇2

⊥Φ, (49)

which after substitution into the parallel electron momentum equation (36)
and using (47) yields Φ − x = F (ψ − x) where ψ is given by Eq. (48).
Obviously, for r > r0 the slope of the function F is given by F1 = 1, which
yields n = 0 outside of the vortex core. The definition of the streamfunction
Φ further implies that outside of the vortex core we also have ϕ = ψ. As
these potentials satisfy the same continuity conditions at the core edge, we
must have ϕ = ψ on the entire x, y plane, which corresponds to E∥ = 0, i.e.
ϕ = uzAz in dimensional units. The dipolar components of the potentials ϕ
and ψ (that are ∝ cosφ) are continuous and smooth functions and that the
corresponding density n and compressional magnetic fieldBz are continuous
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at r = r0. Conversely, the monopolar component of the compressional

magnetic field has a finite jump ∆B
(0)
z at the edge of the vortex core,

where

∆B(0)
z = ψ0 βi⊥

(
j21/4r

2
0

) [
1 + βi⊥ + βe⊥/2 + (1 + βe⊥/2)

(
ρ2i j

2
1/2r

2
0

)]−1
.

(50)
Such discontinuity corresponds to a surface current (with zero thickness and
infinite density) located at r = r0, flowing in the poloidal direction. The
latter is regarded as nonphysical and it probably gives rise to an instability
of the Chaplygin’s monopolar component. In other words, the monopolar
Chaplygin component may exist only when the compressional magnetic
field is negligible, that is usually the case when the plasma β is small.
The ion-scale shear Alfvén vortex (48)-(49) is displayed in Fig. 1.It has
a vanishing parallel electric field, corresponding to ϕ = (uz/cA)Az and
outside of the vortex core it has ∇2

⊥ϕ = ∇2
⊥Az = n = Bz = 0. Inside

the core, large-scale structures feature n/Bz = constant ̸= 1, while on the
ion-scale we have been able to find analytically only vortices with n/Bz = 1.

3.2. Large-β kinetic slow magnetosonic solution, with uz < cA,

B⃗⊥ = 0, and δn/n0 ̸= δBz/B0

In the regime with negligible contribution of acoustic perturbation defined
above, when V∥ → 0, γi⊥ = 2, γe⊥ = 1, and uz > max (vT i⊥ ,

√γi∥vT i∥), we
seek a travelling solution whose perturbations of density and compressional
magnetic field are not fully correlated, i.e. with n ̸= Bz. As outside of the
vortex core the localized nonlinear solution is essentially a linear evanes-
cent response to the nonlinearities located within the core, we ascertain
from Eq. (44) that in the plasma regimes of interest, featuring ion temper-
ature anisotropy, βi∥ ≤ βi⊥ and a moderate parallel electron temperature,
βe∥ ≤ 2+ βe⊥ , the parallel phase velocity of kinetic slow mode vortices can

not be much bigger than the Alfvén speed, see Eq. (44). We adopt a some-
what more rigorous restriction for uz, viz. cA > uz > max (vT i⊥ ,

√γi∥vT i∥)

that permits us to simultaneously set V∥ ≪ 1 and ψ ∼ u2z/c
2
A ≪ 1. The

corresponding kinetic slow wave is localized, κ2 > 0 see Eq. (44), and it can
be realized when the perpendicular ion temperature is of the order βi⊥ ≲ 1
and the parallel ion temperature is sufficiently small, v2T i∥

/c2A = βi∥/2 ≪ 1.

Such ordering is easy to achieve in the Earth’s magnetosphere downstream
of a quasi-perpendicular bow shock, possibly also in the fast solar wind,
but more difficult in the slow solar wind where the separation between cA
and vT i∥ is smaller. Besides, if the parallel electron temperature is not

extremely small, Te∥/Ti∥ ≥ me/mi, the electrons are isothermal along the
magnetic field, too. In such regime we have γe∥ = γe⊥ = 1, and making use
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of Eq. (45) we can rewrite the electron continuity equation (37) as

[e⃗z ×∇F (ψ − x)] · ∇ (n−Bz)−
c2A
u2z

(
1−

βe∥ − βe⊥
2

)
[e⃗z ×∇ (ψ − x)] · ∇∇2

⊥ψ =

−
[
e⃗z ×∇

(
pe∥ − pe⊥ −

βe∥ − βe⊥
2

d2iBz

)]
· ∇ (n−Bz) . (51)

From the isothermal equation of state (35) we have pe∥ −pe⊥ = (1/2)(βe∥ −
βe⊥) d

2
i n and the right-hand-side of Eq. (51) reduces to zero as a mixed

product of two colinear vectors, which enables it to be integrated as

n−Bz =
c2A
u2z

(
1−

βe∥ − βe⊥
2

)
∇2

⊥ψ

F ′ (ψ − x)
+H (ψ − x) , (52)

where H is an arbitrary function. It can be shown that solutions with ar-
bitrary uz/cA can meet all physical continuity conditions at the core’s edge
only if they contain both the shear- and the kinetic slow mode components
described in Eq. (44). However, in such a case the nonlinear term on the
right hand side Eq. (39) is finite on the entire x− y plane, which presents
a formidable obstacle for an analytic treatment and requires extensive nu-
merical calculations that are outside the scope of the present paper. To
proceed, we restrict ourselves to the phase velocities that are much smaller
than the Alfvén speed, cA ≫ uz > vT i∥ , when a solution involving only one

Alfvén mode becomes possible (in the solar wind event recorded by Cluster
[3] such strong constraint might not be fulfilled, and those structures are
likely to be coupled either with the ion sound or with the torsional magnetic
field). In such regime, the electron continuity (37) gives ψ ∼ (u2z/c

2
A) ϕ→ 0,

which in turns yields that the arguments of the functions F and G reduces
to ξ ≡ ψ−x→ −x. Same as before, these functions are adopted to be part-
by-part linear, F (ξ) = (ξ − ξ0)G1, where the parameter ξ0 and the slope
G1 take different constant values ξ

in
0 , G

in
1 and ξout0 , Gout

1 inside and outside,,
where the slopes F1 and H1 take different constant values F in

1 , H in
1 , and

F out
1 , Hout

1 inside and outside of the vortex core determined by ξ(r0) = ξ0.
We note the separatrix r = r0 is not an isoline of the functions F and H,
whose argument is given by ξ = ψ − x → −x = −r cosφ, which obviously
is not constant at the separatrix r = r0. This prohibits the slopes to jump
at the circle r = r0 and implies that F in

1 = F out
1 = 1 and H in

1 = Hout
1 = 0.

Thus, Eq. (52) is decoupled from the rest, while from Eq. (36) we have

ϕ− pe∥ + (1/2)
(
βe∥ − βe⊥

)
d2iBz = 0. (53)

The quantities n, Bz, and ϕ can now be expressed from Eqs. (40), (41),
and (45) as follows (for easier reading, here and below we use the mathcal
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font to denote true constants, such as N ,B,F ,Q,A, and U , that depend
only on the plasma parameters and NOT on the slopes Gin

1 and Gout
1 )

n = N0Φ+N2∇2
⊥Φ ≡ 1

ρ2iQ
Φ +

2 + βe∥ − βe⊥
4Q

∇2
⊥Φ, (54)

Bz = B0Φ+ B2∇2
⊥Φ ≡ −βi⊥ + βe⊥

2ρ2iQ
Φ +

βe∥ − βe⊥
4Q

∇2
⊥Φ, (55)

ϕ = F0Φ+ F2∇2
⊥Φ ≡ Q− 1

Q
Φ +

Q− 1−
(
βe∥ − βe⊥

)
/2

2Q
ρ2i ∇2

⊥Φ, (56)

Q =
βe∥ + βi⊥
βi⊥

+
βi⊥ + βe⊥

2

βe∥ − βe⊥
βi⊥

, U = 1−
βi∥ − βi⊥

2− βe∥ + βe⊥
(57)

It is worth noting that, due to the ions’ FLR effects, our equation (55)
implies that the stream function Φ is not proportional to the magnetic field
Bz, which essentially decouples the velocity and magnetic fields. After
some simple manipulations, the above expressions permit us to rewrite the
charge continuity equation (39) as follows

[e⃗z ×∇ (n−Bz)] · ∇
[
Φ− U x−A1 ρ

2
i (n−Bz)

]
+{

e⃗z ×∇
[
Φ− x− ρ2i (n−Bz) +A2 ρ

2
i ∇2

⊥Φ
]}

· ∇∇2
⊥Φ =[

e⃗z ×∇⊥ (∂/∂xi) ρ
2
i (n−Bz)

]
· ∇ (∂Φ/∂xi) , (58)

where A1 and A2 are arbitrary constants introduced for algebraic conve-
nience. Adopting these in the following way

A1 = U − U − 1

ρ2i (N0 − B0)
, A2 =

U − 1

U
N2 − B2

ρ2i (N0 − B0)
, (59)

using Eqs. (54) and (55), we can cast Eq. (58) in a simple form, viz.

[e⃗z ×∇ (Φ + V x)] ·∇
(
∇2

⊥Φ+ κ2V x
)
= 2 C (e⃗z ×∇ ∂Φ/∂xi) ·∇∇2

⊥∂Φ/∂xi,
(60)

where : κ2 =
U (N0 − B0)

1− U (N2 − B2)
, V = − 1− U (N2 − B2)

1− ρ2i (N0 − B0)− (N2 − B2)
,

C =
ρ2iκ

2

2

V
U

N2 − B2

N0 − B0
.

In the regime of small but finite FLR corrections C∇2
⊥ ≪ 1, the right-hand-

side of Eq. (60) is a small correction that can be approximated by using
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the leading order solution of Eq. (60) ∇2
⊥Φ ≈ −κ2V x+G(Φ+V x), where

G is an arbitrary function of its argument. Then, using the identity

2∇⊥ · {[(e⃗z ×∇⊥f) · ∇⊥]∇⊥G (f)} =

(e⃗z ×∇⊥f) · ∇⊥∇2
⊥G (f)−

[
e⃗z ×∇⊥∇2

⊥f
]
· ∇⊥G (f) . (61)

With the accuracy to first order in the small C∇2
⊥, we rewrite Eq. (60) as:[

e⃗z ×∇
(
1 + C∇2

⊥
)
(Φ + V x)

]
· ∇
[(
1 + C∇2

⊥
) (

∇2
⊥Φ+ κ2V x

)]
= 0, (62)

and is readily integrated one time, viz.(
1 + C ∇2

⊥
) (

∇2
⊥Φ+ κ2V x

)
= G

[(
1 + C ∇2

⊥
)
(Φ + V x)

]
. (63)

We adopt G(ξ) in the form of a continuous part-by-part linear function,
G(ξ) = G1ξ, whose constant slope G1 takes different values Gin

1 and Gout
1

inside and outside of the circle r = r0. Remarkably, with such choice of
G(ξ), the parameter C coming from the nonlinear term on the right-hand-
side of Eq. (60) and (39), cancels out in Eq. (63).As the function G(ξ)
must be continuous, a jump is permitted only if the argument vanishes at
such circle, ξ(r0, φ) = 0. Noting that for a localized solution we must have
Gout

1 = κ2, and setting Gin
1 = −λ2, we obtain the following equations for

the stream function Φ outside and inside the circle r = r0,(
∇2

⊥ − κ2
)
Φout = 0, r > r0,(

∇2
⊥ + λ2

) [
Φin +

(
1 +

κ2

λ2

)
V x
]
= 0, r < r0. (64)

These separate variables in cylindrical coordinates, Φ =
∑

k Φk exp(ikφ);
amplitude of the k-th harmonic is given by

Φout
k = coutk Kk (κr) , Φin

k = cink Jk (λr) , (65)

where cink and coutk are arbitrary constants. It can be argued that the
stream function Φ must be a dipole, i.e. that it may contain only the
dipole component k = 1 (for a discussion, see the paragraph at the end of
this Section). Then, the continuity of the function G readily yields(

Φout + V x
)
r=r0

=
(
Φin + V x

)
r=r0

=(
∇2

⊥Φ
out + κ2V x

)
r=r0

=
(
∇2

⊥Φ
in + κ2V x

)
r=r0

= 0, (66)

which from Eqs. (54)-(56) provides also the continuity of the functions n,
Bz, and ϕ. Finally, matching the above ”in” and ”out” solutions at r = r0
we obtain a standard Larichev& Reznik-type dipole [17]

Φ (r, φ) = V r0 cosφ×

 − K1(κr)
K1(κr0)

, r > r0

−
(
1 + κ2

λ2

)
r
r0

+ κ2

λ2
J1(λr)
J1(λr0)

, r < r0
, (67)
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while the plasma density, compressional magnetic field and the electrostatic
potential are expressed from Eqs. (54)-(56). Obviously, this solution is
localized in space only if the ’out’ e-folding length κ defined in Eq. (61)
or, equivalently obtained from Eq. (44) in the limit uz ≪ cA and γe∥ =

1, is a real quantity, i.e. for κ2 > 0 which yields the condition for the
existence of kinetic slow mode vortices with a complicated dependence on
the values of plasma βjζ , with j = e, i and ζ = ∥,⊥. In contrast to its
shear Alfvén counterpart, Eq. (48) that, being a MHD nonlinear mode
does not possess a spatial scale, the kinetic slow mode vortex Eq. (67)
has a scale comparable the ion Larmor radius 1/κ ∼ ρi. The remaining
free parameter λ is determined from the condition that the radial electric
field is continuous at the edge of the core, (∂ϕin/∂r)r=r0 = (∂ϕout/∂r)r=r0 ,
i.e. of the absence at r = r0 of any surface charges. This gives rise to the
following nonlinear dispersion relation

(
F0 + F2κ

2
) κr0K ′

1 (κr0)

K1 (κr0)
= F0

(
1 +

κ2

λ2

)
−
(
F0 −F2λ

2
) κ2
λ2
λr0 J

′
1 (λr0)

J1 (λr0)
.

(68)
The Chaplygin’s monopole component of the solution can exist only when
the function G(Φ + Vx) jumps at the core edge, producing also a jump in
the vorticity ∇2

⊥Φ. However, approaching the ion scales and including FLR
terms, in the kinetic slow mode branch we obtain Eq. (63) that contains
also the Laplacian of vorticity, ∇4

⊥Φ that becomes singular when ∇2
⊥Φ

has a jump. This is clearly prohibited for physical reasons and indicates
that (quasi)monopolar Chaplygin structures (48) cannot develop on the
ion scale, in the kinetic slow mode branch. As this singularity arises in Eq.
(62) due to the expansion in the small-but-finite FLR inherent in the stress
tensor Eq. (11), one may expect that it vanishes in a plasma description
that involves all orders in FLR, such as the gyrofluids, that would reveal
a sharp peak of charge density and/or a thin current layer that may affect
the stability of a slow magnetosonic Chaplygin vortex. A numerical study
would require extensive calculations and is beyond the scope of this paper.

4. Discussions and concluding remarks

We have studied fluid plasma vortices in a high-β plasma, on the spatial
scale comparable to the ion inertial length and approaching the ion Larmor
radius, including the effects of the compression of the magnetic field and of
the finite ion Larmor radius, in the regime when the acoustic perturbations
are small. The vortices have the form of infinitely long filaments, slightly
tilted to the magnetic field. Our basic Eqs. (36)-(40) possess also a trivial
stationary solution that is fully aligned with the z-axis, ∂/∂t = ∂/∂z = 0
and circularly symmetric ∂/∂φ = 0, i.e. strictly monopolar. However, wa-
ter tank experiments [18], in which perturbations evolve according to the
2-d Euler equation (46) but involve also a small but finite viscosity of the
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fluid (non existent in our plasma regime!), revealed that such stationary
monopoles either disperse or slowly transform into dipolar or tripolar vor-
tices, depending on the amount of shielding in the initial state. This may be
related also with the jumps in the vorticity, ∇2

⊥Φ, at the edge of a monopole.
Conversely, the propagating Lamb dipole, corresponding to a shear-Alfvén
vortex with ψ0 = 0 in Eq. (48), was remarkably stable and could easily
survive collisions with other dipoles [19]. A propagating quasi-monopolar
vortex, i.e. a Chaplygin’s structure with a relatively small dipolar compo-
nent is much more stable than the stationary monopoles. In an ordinary
fluid it may propagate over a distance that is an order of magnitude bigger
than its diameter, as suggested by the weak nonlinear theory, numerical
simulations, and experiments in non-rotating water tanks [20, 21].

In a high-β plasma, we found two distinct types of coherent vortices
propagating in the perpendicular direction. The first is identified as a gen-
eralized shear-Alfvén structure that possesses both the torsional and the
compressional component of the magnetic field perturbation. It has a zero
parallel electric field and, being homogeneous along its axis that is inclined
to the ambient magnetic field, it sweeps along the z-axis with a velocity uz
that is in the Alfvén speed range; the transverse phase velocity is equal to
uz tan θ, where θ is the (small) pitch angle between the structure and the
background magnetic field. While in a sufficiently incompressible plasma
δn/n0 → 0, δBz/B0 → 0 it has the structure of a moving Chaplygin’s vor-
tex with a monopole superimposed on a dipole, in plasmas with β ∼ 1 its
monopolar component is likely to be unstable and short-lived due to the
emergence of a thin current layer and/or a sharp peak of charge density
at its edge. The compressible magnetic field associated with such vortex
is restricted to the interior of the vortex core, while the transverse per-
turbation ”leaks out” from the core to larger distances. The second type
of propagating structures obtainable analytically, possesses finite compres-
sional magnetic field and parallel electric field, as well as the perpendicular
fluid velocity and the density perturbation, but vanishing parallel ion fluid
velocity and the transverse perturbations of the magnetic field. It is iden-
tified as a nonlinear kinetic slow magnetosonic structure. Its parallel phase
velocity is much smaller than the Alfvén speed which also yields a thermal-
ized electron distribution. The transverse fluid velocity of the kinetic slow
mode vortex is better localized than that of its shear-Alfvén counterpart,
while its compressional magnetic field extends outside the core. Purely
kinetic slow magnetosonic structure exists only if v2T i∥

/c2A = βi∥/2 ≪ 1,

otherwise it is coupled with ion sound or torsional magnetic field.
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Figure 1:
Left column: Dipolar Lamb vortex with ψ0 = 0; Bz is of the same order as Bx, By.
Right column: Quasi-monopolar Chaplygin vortex with ψ0 ̸= 0 and Bz → 0.
Top to bottom:
Row 1: Contour plots of the vector potential Az and of the compressional magnetic field
Bz; in the case of the Chaplygin’s vortex the compressional magnetic field is negligibly
small. In the figure, vortices propagate in the vertical direction.
Four typical trajectories of the spacecraft, S-1, S-2, S-3, and S-4 are displayed as red,
blue, black and magenta parallel lines. On the ’black and ’magenta’ trajectories no com-
pressional magnetic field Bz is recorded, but the ’detected signals’ of the perpendicular
magnetic field on ’blue’ and ’black’ trajectories are of a similar intensity as Bz.
Rows 2–5: Three components of the dimensionless magnetic field, as they would be ob-
served by the four spacecrafts on red, blue, black, and magenta trajectories, respectively.
The coordinate system is rotated with respect to that used in the calculations, so that
the Bx component (black line) is now in the direction of the projection of the spacecraft’s
velocity to the perpendicular plane, By (red) is perpendicular both to it and to the mag-
netic field, and Bz (blue) is parallel to the ambient magnetic field. Vanishing E∥ implies
that the dimensionless electric field components are given by Ex = −By, Ey = Bx and
Ez = 0. Density is given by n/Bz = constant, where for the large scale RMHD vortex
n/Bz ̸= 1, and n/Bz = 1 for the ion-scale vortex. Normalizations are defined in Eq. (28)
and we have chosen k = 1/r′0 = 1 and ψ0 = 1.75.
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thousand astronomical units (AU), and assuming that this parameter corresponds
to the Compton wavelength of graviton, we estimated the upper bound for graviton
mass to mg < 2.9 × 10−21 eV. This estimate was not only consistent with the
LIGO estimate obtained from the first gravitational wave (GW) signal GW150914,
but also it was obtained in an independent way. We also discussed the possible
influence of the bulk distribution of matter around GC on this estimate. The
obtained results demonstrated that such analyses of the observed stellar orbits
around GC in the frame of the massive gravity theories represent a very powerful
tool for constraining the graviton mass and probing the predictions of General
Relativity (GR).

1. Introduction

As the carrier of the gravitational interaction, graviton is considered to
be spin-2 (tensor) boson, electrically uncharged, as well as massless since,
according to GR, it travels along null geodesics at the speed of light c
(like photon). However, according to some alternative theories, gravity is
propagated by a massive field, i.e. by a graviton with some small, nonzero
mass mg (for detailed reviews on massive gravity see [1, 2]). This approach
was first introduced in 1939 by Fierz and Pauli [3]. Later, Boulware and
Deser [4] found a presence of ghosts in massive gravity theories, therefore
this feature was treated as a pathology and these theories were considered
as non-realistic. However, de Rham et al. [5] discovered a breakthrough
opportunity to create a ghost-free massive gravity theory and, as a conse-
quence, an interest to these theories was significantly increased. In particu-
lar, these theories of massive gravity have gained a significant attention due
to their ability to provide a possible explanation for the accelerated expan-
sion of the Universe without dark energy (DE) hypothesis (earlier it was
considered in the framework of the relativistic theory of gravity [6, 7, 8]),
and due to important predictions that the velocity vg of gravitational waves
(gravitons) should depend on their frequency f as: v2g/c

2 = 1− c2/(fλg)
2,

as well as that the effective gravitational potential should include a nonlin-
ear (exponential) correction of Yukawa form: ∝ r−1 exp(−r/λg), depending
on the Compton wavelength of graviton: λg = h/(mg c) [9, 10].

Different techniques for constraining the Compton wavelength and mass
of graviton are reviewed in e.g. [2], and the latest experimental limits can
be found in [11] and references therein. Currently, the most robust es-
timates were obtained by LIGO Scientific and Virgo Collaborations from
their analysis of the first GW signal GW150914, assuming a Yukawa type
correction to the gravitational potential with characteristic length scale λg

[12]. This analysis resulted with the following bound on the Compton wave-
length of graviton: λg > 1013 km at 90% confidence, which corresponded to
the graviton mass of mg ≤ 1.2×10−22 eV/c2 [12]. Consequent observations
of gravitational waves by Advanced LIGO and Advanced Virgo detectors
gave an opportunity to update significantly the graviton mass bound to
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mg ≤ 1.27× 10−23 eV/c2 [13].
Recently, it was demonstrated that the observed stellar orbits around

the central SMBH of the Milky Way, and their analysis in the frame of
Yukawa gravity, can be also used for constraining the Compton wavelength
and mass of graviton [14, 15, 16, 17, 18, 19, 20, 21, 22]. These bright, so
called S-stars, move around the compact radio source Sgr A* in the cen-
ter of our Galaxy, which is recently confirmed to be a SMBH. The orbits
of S-stars around Sgr A* are monitored for about 30 years by two large
observational facilities: New Technology Telescope and Very Large Tele-
scope (NTT/VLT) in Chile [23, 24], as well as Keck telescope in Hawaii,
USA [25]. Particularly, these two groups performed the precise astrometric
observations of S2 star, one of the brightest members of the S-star cluster
with high orbital eccentricity, which revealed a deviation from Keplerian
orbit of this star, and which therefore were used to evaluate parameters of
the SMBH, probe GR predictions and search for new physics beyond GR
[26, 27, 28, 29]. Both Keck and GRAVITY (VLT) found that observations
of S2 star trajectory are consistent with the assumption that SMBH with
mass around 4 × 106 M⊙ is located at GC. Moreover, an analysis of ob-
servations showed that GR predictions about relativistic redshift near the
S2 pericenter passage in May 2018 have been confirmed by both collabora-
tions [30, 31, 32]. In 2020 a presence of relativistic precession for S2 star
trajectory has been reported by the GRAVITY collaboration [33].

In spite of a great success of the conventional model of GC which con-
sists of SMBH, other approaches have been considered in the literature.
For instance, it was proposed to substitute SMBH with dense dark mat-
ter (DM) concentration where there is a ball with a constant density [34]
(later this approach for DM model was called the RAR-model). Recently,
it was declared that RAR-model provides a better fit for the S2 star tra-
jectory [35], however, a detailed analysis of the RAR model and SMBH
for GC showed that the conventional model with SMBH is preferable [36].
Analyzing the observational data for the S2 trajectory, the GRAVITY col-
laboration found stringent constraints on the SMBH mass at GC and on
extended mass distribution inside S2 star orbit [37]. An opportunity to
distinguish between the RAR-model and the conventional approach, by se-
lecting the RAR-model parameters where the significant part of DM mass
is concentrated inside a ball with radius less than the S2 star pericenter,
was discussed in [38].

In our investigations we used the previously mentioned observations of
S2 star orbit, obtained by NTT/VLT and Keck groups, in order to evaluate
the gravitational potential at GC and to to test and constrain different
theories of modified gravity at mpc scales [39, 40, 41, 42, 43]. However,
nowadays there are more recent and precise observations not only of S2
star, but also of several other members of the S-star cluster, such as S38,
S55 and S62 [44, 45, 46], and thus it is possible to perform the multi-orbit
fits of these stars (see e.g. [47, 48, 49, 50]), which could be then used to
further improve previous constraints from the two-body orbital fits.
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In this paper we give a short overview of our most important results
about constraining the parameters of Yukawa gravity using the mentioned
observations of S2 star orbit around the central SMBH of the Milky Way,
as well as about our new and independent bounds on graviton mass (also
obtained from these observations), which are since 2019 accepted by the
Particle Data Group (PDG) and included in their ”Gauge and Higgs Boson
Particle Listings” [11].

The paper is organized as follows: in §2 we present the procedure for
obtaining the gravitational potential with a Yukawa-like correction in the
Newtonian limit of any analytic f(R) gravity model, in §3 we review and
discuss some of our most important results regarding the obtained con-
straints on the Compton wavelength and graviton mass from analysis of the
observed stellar orbits around the SMBH at GC in the frame of Yukawa
gravity, and finally in §4 we point out the most important conclusions of
our study.

2. Yukawa-like correction to the gravitational potential

Gravitational potential with a Yukawa correction can be obtained in the
Newtonian limit of any analytic f(R) gravity model which action is given
by [16]:

S =

∫
d4x

√−g [f(R) + XLm] , X =
16πG

c4
, (1)

where f is a generic function of Ricci scalar curvature R and X is the
coupling constant. The resulting 4th-order field equations are:

f ′(R)Rµν −
1

2
f(R)gµν − f ′(R);µν + gµν□f ′(R) =

X
2
Tµν , (2)

which trace is given by:

3□f ′(R) + f ′(R)R− 2f(R) =
X
2
T. (3)

Yukawa-like corrections naturally emerge in the weak field limit in the case
of analytic Taylor expandable f(R) functions with respect to the value
R = 0 (i.e. around the Minkowskian background):

f(R) =
∞∑

n=0

f (n)(0)

n!
Rn = f0 + f1R+

f2
2
R2 + . . . (4)

One can deal with the Newtonian limit of f(R) gravity by adopting the
spherical symmetry, and then the metric can be recast as follows [51]:

ds2 =

[
1 +

2Φ(r)

c2

]
c2dt2 −

[
1− 2Ψ(r)

c2

]
dr2 − r2dΩ2, (5)
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where Φ (r) and Ψ (r) are two potentials. As a result, the gravitational
potential Φ (r), obtained in the weak field limit from g00 component of the
metric tensor, is found to have a Yukawa-like nonlinear correction [16, 51]:

Φ (r) = − GM

(1 + δ)r

(
1 + δe

−
r

Λ

)
, (6)

where Λ2 = −f1/f2, Λ being an arbitrary parameter (usually referred to as
the range of interaction), depending on the typical scale of a gravitational
system, and δ = f1 − 1 is a universal constant (sometimes referred to as
the strength of interaction). The second potential is then given by:

Ψ (r) =
GM

(1 + δ)r

[(
1 +

r

Λ

)
δe

−
r

Λ − 1

]
. (7)

2.1. Nonlinear equations of motion

Since it is difficult to derive the geodesic equations of motion associated
to the line element of Yukawa gravity (see e.g. an approximate derivation
for |δ| ≪ 0.1 in [52]), and taking into account that S2 star moves around
the central SMBH of our Galaxy at a sufficiently large distance where the
space-time can be considered to be practically flat, we studied the classical
equations of motion: ⃗̇r = v⃗, µ⃗̈r = −▽Φ (r⃗), corresponding to the gravita-
tional potential given by expression (6). In that way, one can obtain the
following nonlinear equations of motion in Yukawa gravity:

⃗̈r = −G(M +m)

1 + δ

[
1 + δ

(
1 +

r

Λ

)
e
−
r

Λ

]
r⃗

r3
, (8)

which can be then integrated numerically to obtain the orbital motion and
precession of a two-body system. In such a case, the nonlinearity of the
additional term with respect to the corresponding Keplerian equations of
motion, caused by Yukawa type correction in the gravitational potential
(6), plays a crucial role since it is responsible for inducing the precession of
the resulting integrated orbits.

Besides, it is important to mutually compare the orbits simulated in
Yukawa gravity and in GR, and thus we also used the following parameter-
ized post-Newtonian (PPN) equations of motion for two-body problem, in
order to calculate the simulated orbits in GR (for more details see [21] and
references therein):

⃗̈r = −G(M +m)
r⃗

r3
+

GM

c2r3

{[
2 (β + γ)

GM

r
− γ

(
⃗̇r · ⃗̇r

)]
r⃗

+ 2 (1 + γ)
(
r⃗ · ⃗̇r

)
⃗̇r

}
, (9)
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where β and γ are the PPN parameters, which are both equal to 1 in the
case of GR. As it can be seen from the above expression (9), the PPN
equations of motion are also highly nonlinear.

3. Results: bounding the Compton wavelength and mass of
graviton by stellar orbits around GC

We used the observed stellar orbits around GC to derive constraints on the
Compton wavelength and mass of graviton in two ways:

1. by fitting the simulated orbits of S2 star in Yukawa gravity into its
astrometric observations, and then by using chi-square test of goodness
of these fits in order to obtain the bounds on parameter Λ at 90%
confidence;

2. by equating the precession angles of S-stars in Yukawa gravity to the
corresponding values of their Schwarzschild precession, in order to find
the values of Λ which satisfy this condition. This is done under an
assumption that GR predictions for orbital precession of the S-stars
will be successfully confirmed in future.

Here we will briefly describe both methods and illustrate the influence of
bulk distribution of mass on the obtained estimates (for more details see
[15, 21, 17]).

3.1. Bounds from the observed orbit of S2 star

As previously mentioned, we developed a novel and an independent method
for obtaining the graviton mass bounds from analysis of the observed or-
bit of S2 star in the frame of Yukawa gravity [15]. For that purpose, we
first performed two-body simulations of S2 star orbit in the gravitational
potential (6), in which we varied the parameters Λ and δ over a parameter
space of Yukawa gravity. For each (Λ, δ) pair, the simulated orbits were
fitted into the astrometric observations of S2 star, in order to obtain the
coordinates of initial position and initial velocity in the orbital plane. The
best fits are obtained by minimizing the χ2 statistics. An example of such
a fit for Λ = 3030 AU and δ = 1/3 is presented in the left panel of Fig. 1,
from which it can be seen that Yukawa gravity induces orbital precession
in the same direction as in GR.

The χ2 values of the fits which are better than the fit by the Keple-
rian orbit (i.e. where χ2 < χ2

Kepler) were then plotted as function of the

parameters Λ and δ. In that way, the corresponding χ2-map over the Λ− δ
parameter space of Yukawa gravity is obtained (see the right panel of Fig.
1). It can be seen from this χ2-map that very good fits may be obtained for
almost all values of universal constant δ, ranging from 10−2 up to 106. How-
ever, the situation with the parameter Λ is different, since the fits which are
much better than in the Keplerian case (represented by the region enclosed
within the white contour on the χ2-map in the right panel of Fig. 1), can
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be obtained for relatively narrow range of Λ ≈ 5000−6000 AU. This result
indicated that, in the case of S2 star, the range of Yukawa interaction Λ is
most likely on the order of several thousand AU. Assuming that Λ corre-
sponds to the Compton wavelength λg of graviton, this constraint could be
then used to estimate the lower bound for λg, and thus the upper bound
for mass mg of graviton.
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Figure 1: Left: An example of fitting a simulated orbit in Yukawa gravity
(black solid line) into the astrometric observations of S2 star (blue circles
with error bars), obtained by NTT/VLT and Keck telescopes. Right: An
example of χ2-map over the Λ − δ parameter space of Yukawa gravity,
obtained from the fits like the one shown in the left panel. The color shades
represent the values of the reduced χ2 which are less than the corresponding
value in the case of Keplerian orbit, while the contours enclose three regions
around the χ2 minimum, from which the one enclosed by the white contour
is the closest to the minimum.

In order to estimate these bounds, we used the obtained χ2 values to
test the null hypothesis that Λ should be at least on the order of 103 AU.
For that purpose we assumed the significance level of α = 0.1 and calculated
the critical value χ2

ν,α, where ν = 66 was the number of degrees of freedom

for the above orbital fits. By comparing the χ2 values of these fits with the
critical value χ2

ν,α, it was found that there was a limit for Λ, below which χ2

is always greater than χ2
ν,α (see Fig. 1 in [15]). Therefore, such cases could

be then rejected with high probability of 1 − α = 90%, leaving only those
cases with Λ above this limit. This limit thus represented the lower bound
on Λ and we estimated it for two different values of universal constant δ.
In the case of δ = 1 this bound was Λ = 2900 AU (or 4.3× 1011 km), while
in the case of δ = 100 it was Λ = 4300 AU (or 6.4× 1011 km).

Under an assumption that the above lower bounds on the range of
Yukawa gravity Λ also represent, at the same time, the lower bounds on
the Compton wavelength of graviton λg, we found the corresponding upper
bounds on its mass with 90% probability: mg = 2.9 × 10−21 eV for δ = 1
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and mg = 1.9× 10−21 eV for δ = 100. Both of our estimates were slightly
weaker, but consistent with LIGO bounds obtained from the first GW
signal GW150914 [12]. However, they were evaluated using a novel and an
independent method based on analysis of the observed orbit of S2 star in
the frame of Yukawa gravity.

3.2. Bounds from Schwarzschild precession of S-stars

Recently, GRAVITY Collaboration detected the orbital precession of the
S2 star and showed that it is close to the GR prediction [33]. Taking this
into account, we also derived bounds on the Compton wavelength and mass
of graviton under an assumption that the orbital precession of S-stars in
Yukawa gravity is equal to the Schwarzschild precession in GR.

For that purpose, we first derived the approximate expression for apoc-
enter shift in Yukawa gravity ∆φY , assuming that Yukawa gravity induces
a small perturbation to the Newtonian gravitational potential [15]. The
obtained expression is in the form of power series over a/Λ ratio, where a is
the semi-major axis of the orbital ellipse. Taking into account that a ≪ Λ
in the case of S-stars, the higher order terms in this power series expansion
could be neglected. The remaining first order term then yields the following
approximate formula for the orbital precession in Yukawa gravity [15]:

∆φrad
Y ≈ πδ

√
1− e2

1 + δ

a2

Λ2
, (10)

where e is orbital eccentricity.
By equating the above expression with the well known formula for

Schwarzschild precession [10]:

∆φrad
GR ≈ 6πGM

c2a(1− e2)
(11)

it was found that Λ has to satisfy the following condition in order to produce
the same precession angle:

Λ ≈
√

δc2(a
√
1− e2)3

6 (1 + δ)GM
. (12)

Using the above expression (12), we estimated the Compton wavelength
and mass of graviton for a sample of S-stars, presented in [44] (see Table
2 in [15]). The obtained results showed that the range of Yukawa gravity
Λ could be indeed constrained in such a way to induce the same orbital
precession of stellar orbits as in GR. In the case of S-stars with smaller
orbital eccentricities and orbital periods of around a several decades, if
observed, such precession could provide constraints on the mass of graviton
of mg ≈ 8× 10−23 eV, which is stronger than the constraints from S2 star
orbital fits, presented in the previous paragraph.
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3.3. Influence of bulk distribution of mass

Stellar orbits around central SMBH of our Galaxy may be influenced by
other stars in the S-stellar cluster, interstellar gas and DM, which con-
sequently may also affect the obtained constraints on the Compton wave-
length and mass of graviton. Therefore, we also calculated these constraints
in the case of a bulk distribution of mass M(r) = MBH + Mext(r), con-
sisting of SMBH mass MBH = 4.3 × 106 M⊙ [23] and an extended distri-
bution of matter Mext(r), enclosed within some radius r, which describes
the contribution from the stellar cluster, interstellar gas and DM. We mod-
eled Mext(r) by a power-law mass density profile (see [17] and references
therein):

ρ(r) = ρ0

(
r

r0

)−α

, (13)

where α = 1.4 and r0 = 10′′. In that way we obtained the following
expression for the extended mass distribution [17]:

Mext(r) =
4πρ0r

α
0

3− α
r3−α, (14)

which corresponds to the following gravitational potential [17, 53]:

Φext (r) =
−4πGρ0r

α
0

(3− α) (2− α)

(
r∞

2−α − r2−α
)
, (15)

where r∞ is the outer radius for extended mass distribution of matter. The
total gravitational potential Φtotal(r) can be then obtained as a sum of
Yukawa potential Φ(r) for central SMBH with mass MBH and potential
Φext for the extended mass distribution [17]:

Φtotal(r) = Φ(r) + Φext(r). (16)

Fig. 2 shows three comparisons between the simulated orbits of S2 star
in GR (using previously described PPN approach) and in the gravitational
potential Φtotal(r) for bulk distribution of mass. Here we assumed the
following three ranges of Yukawa gravity: Λ = 2500, 2547 and 2600 AU,
and extended mass distribution of matter for ρ0 = 5× 108 M⊙ pc−3. As it
can be seen from Fig. 2, range of Yukawa gravity Λ can significantly affect
the simulated orbits of S2 star, especially its orbital precession, which is in
the same direction as in GR. Moreover, as it can be seen from the middle
panel of Fig. 2 which corresponds to Λ = 2547 AU, even in the case of bulk
distribution of mass it is possible to constrain Λ so that the resulted orbital
precession becomes very close to the Schwarzschild precession in GR, which
in the case of S2 star is ≈ 0◦.20 [23].

The dependence of the precession angle per orbital period of S2 star on
both Λ and δ parameters of Yukawa gravity with extended mass distribu-
tion is presented in Fig. 3. Here we assumed the following two cases of
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Figure 2: Comparison between the simulated orbits of S2 star, during five
orbital periods, in GR (blue solid line) and in Yukawa gravity for δ =
10 and with the mass density distribution of extended matter for ρ0 =
5× 108 M⊙ pc−3 (red dashed line). The left panels show full S2 star orbit,
while the region around its apocenter is zoomed in the right panel for better
insight. The panels, from top to bottom, correspond to Λ = 2500, 2547
and 2600 AU, respectively.

mass density distribution of extended matter: ρ0 = 5× 108 M⊙ pc−3 and
ρ0 = 1× 109 M⊙ pc−3. The locations in the Λ− δ parameter space where
the precession angle is the same as in GR are also presented in Fig. 3 by
white dashed line. It can be seen from Fig. 3 that the mass density distri-
bution of extended matter ρ0 could have significant influence on the value
of precession angle per orbital period of S2 star. Namely, although orbital
precession in the case of Yukawa gravitational potential Φ(r) is in the same
direction as in GR, extended mass distribution in Φtotal(r) induces an ad-
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Figure 3: The precession angle (denoted by color shades) per orbital period
of S2 star over Λ−δ parameter space of Yukawa gravity with extended mass
distribution. The mass density distribution of extended matter is obtained
for ρ0 = 5 × 108 M⊙ pc−3 (left panel) and ρ0 = 1 × 109 M⊙ pc−3 (right
panel). The locations in the parameter space where the precession angle is
the same as in GR (i.e. 0◦.20) are designated by white dashed line.

ditional precession in opposite direction, due to which the total precession
is then reduced. By comparing the left and right panels of Fig. 3, it can
be also seen that the values of parameter Λ, which correspond to the same
orbital precession as in GR, are smaller for larger mass density distribution
of extended matter ρ0. Therefore, the corresponding estimates for gravi-
ton mass are slightly larger, but still remain in the expected interval, as
demonstrated in [17].

4. Conclusions

Here we presented a short overview of our main results concerning the
constraints on the Compton wavelength and mass of graviton, obtained
from analysis of the observed stellar orbits around GC in the frame of
Yukawa gravity. These results were obtained in two ways: by a statistical
analysis of the fits of the observed orbit of S2 star by its simulated orbits
in Yukawa gravity, and by requirement that the precession angles of S-stars
in Yukawa gravity should be equal to their precession angles due to the
Schwarzschild precession in GR. These results showed that:

� Investigations of the observed stellar orbits around GC in the frame of
the massive gravity theories represent a powerful tool for constraining
the graviton mass and probing the predictions of GR;

� The nonlinearity of equations of motion, caused by Yukawa type cor-
rection to the gravitational potential, plays a very important role in
such analyses, since it is responsible for inducing the precession of the



Graviton mass and Yukawa gravity: constraints from stellar orbits 243

resulting integrated orbits;

� The constraint for graviton mass of mg < 2.9 × 10−21 eV, obtained
from the orbital fits of S2 star, is slightly weaker but consistent with
the LIGO estimate from the first GW signal GW150914 [12];

� Since it was evaluated in a completely new way and independently
from other existing estimates, the above bound on graviton mass was
in 2019 included in the ”Gauge and Higgs Boson Particle Listings”
published by PDG [11];

� The second studied method, when applied to S-stars with smaller or-
bital eccentricities and orbital periods of around a several decades,
could provide even stronger constraints of mg ≈ 8× 10−23 eV;

� Bulk distribution of mass can induces an additional precession in op-
posite direction with respect to Yukawa gravity, due to which the
corresponding estimates for graviton mass could be slightly larger for
larger mass density distributions of the extended matter, but they
would still remain in the expected range.
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Abstract

Synergy of topology and nonlinearity in photonics opens new prospects for
fundamental science and device functionalities. We consider the sensitivity of
the band topology to the modulation instability and vice versa, related bulk-edge
correspondence, and nonlinearity driven topological phase transitions in photonic
lattices. Here, we briefly review our first findings in this emerging field and discuss
some topics of ongoing research.

1. Introduction

“The thing’s hollow – it goes on forever – and – oh my God! – it’s full of
stars!”1 - to start with words we are ‘forced’ to use so often in our journey
towards the place where topology meets nonlinearity and vice versa through
photonics.
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There are a few comprehensive review papers which provide surveys of
the combination of topology, nonlinearity, dissipation, and quantum effects
in atomic and photonic systems [1, 2, 3]. We will omit detailed introduc-
tion, challenging the readers to find their own route to this unique place,
just mentioning that, nowadays, there are a variety of methods to combine
nontrivial topological properties with nonlinear interactions using platforms
ranging from exciton-polariton condensates in microcavities [4, 5], waveg-
uide arrays [6], metasurfaces [7], and resonator lattices [8, 9]. Interest
in nonlinear topological photonic systems arises from their potential to
exhibit novel phenomena without any analogue in electronic topological
materials. For example, they offer new approaches for designing robust
localized modes giving rise to new types of lasers [10, 11] and frequency
combs [12]. The focus of theoretical investigations have been positioned
on the self-focusing of unidirectional edge states [13, 14, 15], solitary bulk
modes [16, 17, 18], as well as the interaction between the two [19]. The
possibility of chaos and extreme sensitivity to initial conditions arising in
complex nonlinear wave systems is one of the main issues that must be
tackled when considering applications of nonlinear topological systems.

The problem we were initially interested in was to understand the non-
linear dynamics of Bloch waves in topological bands, specifically their sen-
sitivity (if any) to a band’s topological properties. We demonstrated that
the modulational instability could lead to the spontaneous formation of
wave fields characterized by non-trivial Chern numbers inherited from the
linear Bloch bands [20, 21, 22, 23, 24] owing to the energy-dependent
parametric gain exhibited by unstable Bloch waves. The can result in the
selective population of a single Bloch band by injecting a simple plane
wave as the initial condition. This is a precondition for efficient measuring
of the bulk Chern number, which is generally a difficult task for classical
waves [25, 26, 27, 28, 29, 30, 31]. Our approach is based on the generic
phenomenon of modulational instability and is thus insensitive to the type
and precise form of the nonlinearity. In addition, we have recently shown
the ability of modulation instability to study the anomalous topological
phases in driven photonic lattices [32].

In the following we will stay in the limit of non-driven topological lat-
tices and briefly summarize the main findings, considering the example of
π-flux square lattice model [33]. We consider the modulational instability
of nonlinear Bloch waves, by employing linear stability analysis to charac-
terize the dynamics at short evolution times and numerical simulations to
establish the formation of a quasi-equilibrium wave field at longer times.
At low intensities the instability remains confined to the initially-excited
band [34]-[39], giving the possibility of extracting the band’s Chern num-
ber from the wave Fourier spectrum [40]-[42]. We associate this stage with
prethermalization phase. Interestingly, with increasing intensities, we have
seen the re-emergence of stability at a critical intensity associated with a
nonlinearity-induced closure of the band gap [43].
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2. Overview of model

We introduce the two-dimensional nonlinear Schrödinger equation describ-
ing the wave propagation dynamics in photonic lattices,

i∂tψr = (ĤL + ĤNL)ψr, (1)

where ĤL and ĤNL are linear and nonlinear parts of the Hamiltonian,
respectively, and r = (x,y) indexes the lattice sites. We take ĤL to be
the chiral-π-flux model [44], Fig. 1(a), which presents a two dimensional
Chern insulator. The underlying square lattice is composed of two sublat-

tices a and b, with ψr = (ψ
(a)
r , ψ

(b)
r )T , and is described by the Bloch wave

Hamiltonian

ĤL(k) = d(k) · σ̂, dz = ∆+ 2J2(coskx − cosky) (2)

dx + idy = J1[e
−iπ/4(1 + ei(ky−kx)) + eiπ/4(e−ikx + eiky)],

where k = (kx,ky) is the wavevector inside the first Brillouin zone, kx,y ∈
[−π, π], σ̂ = (σ̂x, σ̂y, σ̂z) are Pauli matrices, J1,2 are nearest and next-
nearest neighbour hopping strengths, and ∆ is a detuning between the
sublattices. In the following we scale all energies with respect to J1 (i.e.
setting J1 = 1) and present the results for J2 = J1/

√
2J1 for convenience.

Fig. 1(b) shows the energy spectrum of the Bloch eigenstates ĤL(k)un(k) =
En(k)un(k), which form two bands n = 1, 2 separated by a gap. The gap
closes at ∆/J1 = ±2

√
2, which corresponds to a change in the quantized

Chern number [1],

C =
1

2πi

∫
BZ

Tr
[
P̂ (k)[∂kxP̂(k), ∂kyP̂(k)]

]
dk, (3)

where P̂ (k) = u1(k)u
†
1(k) is the projection operator onto the first band’s

Bloch functions.
For the nonlinear part of the Hamiltonian, ĤNL, we consider an on-site

nonlinearity of the form

ĤNL = Γdiag[f(|ψr|2)], (4)

where Γ is the nonlinear interaction strength and f is the nonlinear response
function. We analyze the nonlinear mode dynamics for the case of the sat-
urable nonlinarity, used to model effects such as multi-photon absorption
and material damage, which limit the practical strength of the Kerr ef-
fect [45]. In the low intensity limit, however, the saturable nonlinearity
reduces to the standard Kerr nonlinearity.

To characterize the complex multi-mode dynamics, we compute the
participation number in the lattice and k-space: PR = P2/(2N2

∑
r |ψr|4)
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Figure 1: (a) Schematic of the lattice, consisting of two sublattices (a, b)
with detuning ∆ and inter- (intra-) sublattice couplings J1 (J2). (b) Linear
band structure as a function of the sublattice detuning ∆. (c) Growth
rate of the most unstable wavevector kc of the k = 0 nonlinear Bloch
wave. Dashed red line denotes the band inversion produced by nonlinearity.
Dark blue areas correspond to stablity, encircled areas (dashed white lines)
correspond to oscillatory instability and the rest to exponential instability
of nonlinear Bloch wave.

and PK = ♡P2/(2N2
∑

k |ψk|4), respectively, where P and ♡P are the mode
powers in lattice and k-spaces; the field’s Chern number C(t); the band

population ratio R(k) = u†1(k)ψ(k)/(u
†
2(k)ψ(k)), and the purity gap which

indicates the minimum distance between bands. In the following, we will
show the results for C(t) measured by summing the charges of the phase
singularities of the polarization azimuth θ = 1

2 tan
−1(nx/nz) weighted by

sgn(ny), where n = (nx, ny, nz)
T is polarization vector. It is worth men-

tioning the diversity of approaches that are being used to determine the
band Chern number [26, 27, 28, 46].

3. Nonlinear dynamics senses band topology

Here we briefly introduce the numerical approach. The nonlinear extension
of the k0 = (π,0) Bloch wave [47, 48], ϕr = (

√
I0, 0)

T eiπx with energy
ENL = ∆− 4J2 + Γf(I0) is our starting point. This mode bifurcates from
the lower band when ∆ < 4J2 and from the upper band when ∆ > 4J2.
We construct the initial condition for the numerical beam propagation sim-
ulations by perturbing the nonlinear Bloch wave with a random complex
perturbation with amplitude not exceeding 0.01

√
I0 [33]. This random per-

turbation serves to seed any instabilities exhibited by the nonlinear Bloch
wave.
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3.1. The short time dynamics: Linear stability analysis

The initial phase of the MI development is investigated adopting the linear
stability analysis (LSA) combining analytical and numerical tools. It con-
sists in tracking the evolution of the small perturbation of the nonlinear
Bloch mode. The first step was to add the small complex perturbation
|p| ≪ 1 to the Bloch mode: ψ(t) = (ϕ(k0)e

ik0·r+p(k, t)eik·r)e−iEt and sub-
stitute this expression into the system equation (1). The second step was
linearization of the equation with respect to the small perturbation, which
resulted in the linear evolution equation of small perturbation. And the
final step consisted in solving this equation which can be interpreted as an
eigenequation of perturbation. The corresponding solutions – the instabil-
ity eigenvalues λ – reveal the stability properties. Perturbation modes are
exponentially or oscillatory unstable if corresponding eigenvalues are purely
imaginary or complex with finite both real and imaginary part, respectively.
Further details are given in the supplement of our paper [33].

In Fig. 1(c) we re-plot (see our paper [33] for details) the growth rate
of the most unstable perturbation wavevector kc. Contour white dashed
lines separate parameter areas with different types of instability: exponen-
tial and oscillatory outside and inside the contours, respectively. When the
nonlinear Bloch wave bifurcates from the band edge, it exhibits a long wave-
length instability for weak self-focusing nonlinearity (Γmeff < 0, where meff

is the wave effective mass at k0), similar to the scalar nonlinear Schrödinger
equation. On the other hand,the mid-band nonlinear Bloch waves are un-
stable for weak Γ regardless of its sign. A second long wavelength in-
stability emerges at a stronger critical value of Γ, corresponding to the
nonlinear potential ĤNL = ΓI0

2 (σ̂0 + σ̂z) inducing a band crossing at k0,
i.e. ∆ + ΓI0/2 = 4J2 [dashed red line in Figs. 1(c)].

The possibility of the nonlinearity induced band inversion was the first
significant finding of our research.

3.2. The high symmetry points of the Brillouin zone

To understand the long wavelength instabilities, we considered the contin-
uum limit of Eq. (1), which can be rewritten in a form of the effective
Dirac model. By taking k = k0 + p with p ≪ 1, the Dirac Hamiltonian is
obtained:

ĤD = −J1
√
2(pxσ̂y + pyσ̂x) + (∆− 4J2 + J2[k

2
x + k2y])σ̂z. (5)

The corresponding nonlinear Bloch wave solutions of Eq. 5 we derived an-
alytically in [33]. Here, we extract the main findings regarding the mode
dynamics in the close neighborhood of the critical point by re-plotting
Fig. 2(a-c) from our paper [33]. Below the critical line, for example for
ΓI0 = 1, the Bloch wave spectrum in the trivial (red dashed line) and non-
trivial (blue solid line) phases consists of two gapped bands. The critical
line coincides with the formation of a nonlinear Dirac cone at k0 [43], i.e.
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Figure 2: (a-c) The transition in the nonlinear Bloch wave spectrum across
the critical line in the nontrivial (blue solid line) and trivial phases (red
dashed line) of the effective Dirac model Eq. 5, respectively.

a symmetry-breaking bifurcation of the nonlinear Bloch waves. At the bi-
furcation, new modes |ϕ(r)⟩ = (

√
Iae

iφ,
√
Ib)e

iπx emerge, with the relative
phase between the two sublattice φ forming a free parameter. Moreover,
in the non-trivial phase, an additional bifurcation occurs at higher inten-
sities at |p| =

√
4−∆/J2, corresponding to dz(p) = 0, Fig. 2(b). The

new branches emerging from this bifurcation merge with the lower band
as ΓI0 is increased (ΓI0 = 3 in Fig. 2(c)) producing a gapless nonlinear
Bloch wave spectrum, while in the trivial phase the nonlinear Bloch wave
spectrum remains gaped [33].

We showed that the modes’ stability in the vicinity of the bifurcation
point was sensitive to the linear band topology [33]. In the non-trivial
phase, the perturbation modes’ polarization rotated away to the opposite
pole of the Bloch sphere with respect to the injected nonlinear Bloch mode
opposite to the case in the trivial phase. Therefore the overlap between
the nonlinear Bloch wave and the perturbed mode is reduced, weakening
the efficiency of the nonlinear wave mixing responsible for the emergence
of instabilities.

From these considerations we concluded that the modulational instability
is sensitive to the geometrical properties of the Bloch waves, i.e. their
polarization and the band topology.

3.3. The long time dynamics

Next, we carried out numerical simulations of Eq. 1 to study the develop-
ment of the instability beyond the initial linearized dynamics, considering
a system of size N = 32× 32 unit cells and periodic boundary conditions.

Fig. 3 illustrates the dynamics of the k0 = (π,0) nonlinear Bloch wave
with intensity I0 = 1. We fixed the value of ∆ and averaged the observables
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Figure 3: The evolution of < PR >, < PK > and the purity gap. The
parameters correspond to different types of nonlinearity: focusing (Γ >
0) and defocusing (Γ < 0). Black dashed and blue solid line denote the
exponential type of instability developed for Γ = −1.5, ∆ = 0, and Γ =
2.2, ∆ = 0, respectively, while red dotted line denotes the oscillatory type
of instability developed for Γ = 3, ∆ = 2.5. These cases are marked in Fig.
1(c) by white circles.

Figure 4: (a) Purity gap time t = tf = 40/J1 as a function of ∆. (b,c)
Field polarization textures at tf in the (b) trivial (∆ = −3) and (c) non-
trivial (∆ = 0) phases. The Chern number is obtained by summing the
charges of the polarization azimuth vortices (indicated by arrows) weighted
by sgn(ny) at the vortex core (indicated by ±1) [40]. This figure is taken
from our paper [33].
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over an ensemble of 100 random initial perturbations.
In the regime with focusing instability a collection of localized solitons is

generated, responsible for decrease in ⟨Pr⟩ in Fig. 3(a). On the other hand,
the defocusing nonlinearity spreads the energy over both sublattices, result-
ing in a small increase in ⟨Pr⟩. In all the cases, the increase of ⟨Pk⟩ is due
to the nonlinear wave mixing, which caused the excitation of other Fourier
modes. This is accompanied by the purity gap opening and emergence of
a well-defined Chern number in the case with exponential instabilities. In-
terestingly, the purity gap opens prior to ⟨Pr,k⟩ reaching a steady state.
Under the oscillatory instability, the purity gap remains negligible due to
the competition between pairs of instability modes with the same growth
rates.

In Fig. 4(a) the value of the purity gap at t = tf = 40J1 as a function
of ∆ is shown. It follows the instability growth rate behaviour in Fig. 1 for
∆ > 0, it vanishes when the Bloch wave is linearly stable or exhibits an
oscillatory instability and closes at ∆ ≈ −2 despite no change in the fastest
growing instability mode. This corresponds to a nonlinearity-induced clo-
sure of the band gap at the other high symmetry point k = (0, π).

Further enlightening of the band topology is provided by measuring the
field polarization ⟨n̂(k)⟩ at long times, Fig.4(b,c). Details are presented in
our paper [33]. In the trivial phase (large ∆) the field is predominantly
localized to a single sublattice, such that nz remains nonzero and there are
no phase singularities in θ, hence C = 0. In the non-trivial phase, ⟨n̂(k)⟩
spans the entire Bloch sphere, corresponding to a pair of opposite charge
phase singularities with opposite weights sgn(ny) = ±1, and hence C = 1.

To summarize, we proved that the long time instability dynamics can be
used to measure the band Chern number.

3.4. Band relaxation triggered by the modulation instability

The convergence of participation number P and Chern number C to con-
stant values suggests the formation of an equilibrium state at long evolution
times t [33]. Since C(t) is a function of the k-dependent band populations,
we treat the k-space field components at a particular wavevector k as two
level systems that can exchange energy with other wavevectors (the en-
vironment) via the nonlinearity. Here, we attempt to use it in order to
understand the wave thermalization process in the presence of nonlinear-
ity [49, 50]. Regarding this, assuming that the system can reach some
effective thermal equilibrium, we adopt the grand-canonical (Gibbs) ap-
proach [51]. From this point of view, we present the occupation probability
for the single particle state un(k) in a form: ρn(k) =

1
Z exp(−βeff,nPn(k)),

where Z is the partition function, βeff,n = β[En(k) − µ], β is the inverse
temperature, n = 1, 2, Pn(k) is the mode occupation number, and µ is the
chemical potential.

Consequently, the mode in band n and with wavevector k should have
an average occupation ρn(k) = 1/βeff,n, from which we obtained the ex-



254 A. Maluckov et al.

Figure 5: Dynamics of averaged PK , PR, C, β for Γ = 2.2 and ∆ = 0, 1, 2
are presented by black dashed, red solid, and blue dash-dotted lines, re-
spectively. The inverse temperature is presented in logarithm scale for the
convenience. The parameters from this figure are denoted by red circles in
Fig. 1 (c).

pressions for β and µ as functions of occupation probabilities:

β =
ρ1 − ρ2

2ρ1ρ2ω(k)
, µ = −(ρ1 + ρ2)ω(k)

ρ1 − ρ2
, (6)

where ω(k) = −E1(k) = E2(k) > 0.
In Fig. 5 we plot the dynamics of averaged participation numbers <

PR > and < PK >, Chern number and β for three sets of parameters Γ =
2.2 and ∆ = 0, 1, 2. While the average of C converges to unity in first two
cases, there are significant fluctuations for Γ = 2.2 and ∆ = 2 after short
transient time. On the other hand, < Pr > and < Pk > saturate to finite
values only in the case with ∆ = 0, which together with the< β > dynamics
indicates that the system is not reaching a thermal equilibrium in the cases
with ∆ = 1 and 2; β does not approach a constant value, but remains
dependent on the wavevector k. By increasing the propagation time, we
have seen the tendency of saturation in all observables for selected values
of parameters, i.e. the system is in a some kind of the “pre-thermalization”
regime in which β = β(k). We correlated the relaxation tendencies to the
type of MI in the initial phase of the instability development in Fig. 1(c):
the exponential instability is a necessary but not a sufficient condition for
thermalization.

In order to explore the pre-thermalization more systematically, we con-
sidered in Fig. 6 the observables < PR >, < R >, < C >, < β > taken
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Figure 6: Effect of the sublattice detuning, ∆, on observables (a) the aver-
aged participation number in the lattice space, (b) the averaged population
ratio, (c) the averaged Chern number, and (d) the averaged inverse tem-
perature at time t = tf = 100J1. The averaging is done over the ensemble
of 100 initial conditions (see the text). Black solid and red dashed lines cor-
respond to the nonlinearity strengths Γ = −1.5 and Γ = 2.2, respectively.
Vertical bars denote the standard deviations from the averaged (mean) val-
ues.

at t = tf = 100J1 as a function of the sublattice detuning, ∆, which is
related to the band flatness and width of the bands gap. It is found that,
in the area corresponding to |∆| < 2

√
2, which is situated between two

band-crossing points, the system is topologically nontrivial, as sketched in
the Fig. 1(b). The calculated value of C = 1 is caught by the excitation
of the whole gaped band triggered by the MI in the corresponding areas,
Fig. 6 (c), for both selected values of Γ at t = 100. Recalling Fig. 3, we see
that in both cases, at ∆ = 0, all quantities converged to fixed values. On
the other hand, in Fig. 5, for Γ = 2.2, thermalization is reached for ∆ = 0,
while for ∆ = 1 and 2 the long time behaviour of observables indicates not
unfinished thermalization. So, the prethermalization phase is detected for
∆ = 1 while for ∆ = 2, the system is out of it.

4. Conclusions

Here, we reviewed the main findings of our investigation, which is still in
progress, of the ability to scan the topological band properties by inducing
the modulational instability of nonlinear Bloch waves. In the non-driven
photonic Chern inuslator we proved the MI sensitivity to geometrical prop-
erties of Bloch waves, i.e. their polarization, and provided the tool to
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measure the band Chern number by utilizing the long time instability dy-
namics. In other words, we established that the topological properties of
the band are imprinted on the MI at small and large times and nonlinearity
scales. This, together with our recent achievements regarding the driven
topological photonic lattices [32], gives us the confidence to proceed with
a search for new capabilities of the modulation instability in the word of
topological photonics.
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Abstract

In our paper we modify the Jacobi Elliptic function (JEF) expan-
sion method to obtain solutions to the Gross-Pitaevskii equation with
a cylindrical potential, in which case the three transverse dimensions
are no longer symmetric. The solutions end up combining the features
of the solutions for the spherical potential and the solutions of the or-
dinary Nonlinear Schrödinger equation (NLSE). Solutions which have
an oscillating amplitude and modulational stability can be found.

PACS numbers: 05.45.Yv, 42.65.Tg

1. Introduction

Gross-Pitaevskii equation (GPE) is of the extreme importance in the study
of the Bose-Einstein condensates (BEC), where it describes the behavior of
the condensate wavefunction [1]. It has been introduced independently by
Gross [2] and Pitaevskii [3] for an unrelated problem, but has since been
found of great use in the study of BEC. Solitary wave solutions [4] have
been discovered in GPE. One of the main methods of finding approximate
solutions to the GP equation and related equations such as the Ginzburg-
Landau equation is using the variational approximation [5, 6, 7]. Such an
approach uncovered various complicated forms of solutions such as vortices
[5], dipoles [6], tripoles [6] and various oscillating structures [7]. In [8] exact
analytic solutions for the (1-1)D solutions to the GPE were found. The gain
function was used in the diffraction coefficient to produce stable oscillating
solitary wave solutions. The paper introduces many novel ideas, such as
the chirp function for which in order to obtain it one must solve a Ricatti
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differential equation. The paper obtains stable oscillating solutions for
constant potential, but a complicated form for the nonlinearity coefficient.

Recently, a new class of solutions based on the Jacobi Elliptic Function
(JEF) expansion [9, 10, 11] for the Nonlinear Schrödinger Equation (NLSE)
and the methods used have been generalized in [12, 13] for the GPE. Unlike
in [8], in [9, 10, 11, 12, 13] the dispersion/diffraction coefficient is no longer
a constant and the gain function is factored differently into the formula for
the nonlinearity coefficient, among other differences in the parameters of
the solution. Having a non-constant dispersion/diffraction coefficient allows
the use of dispersion [14] and diffraction management [15]. The modula-
tional stability of the solutions in [9, 10, 11, 12, 13] for both the NLSE
and the GPE was analyzed in [16] and also [13] for both dark/bright and
spatial/temporal solitary waves, under both normal and anomalous disper-
sion. It was determined that in all three possible combinations the solitary
waves achieve either unconditional stability or stability under dispersion
management.

All the obtained solutions for the GPE have so far been for a potential
with spherical symmetry. However, other forms of the potential are possible
including ones that use trigonometric functions [17]. For many practical sit-
uations, confining potentials with cylindrical symmetry are used. In other
words, there is a confining potential only in two transverse dimensions,
reminiscent of an infinitely long cylinder [18, 19]. The elongated cylindrical
form of the potential allows experimental physicists to analyze the Bose-
Einstein condensate in a regime close to the 1D case [20]. In this paper we
extend the results in [12, 13] to the case of the cylindrical potential.

2. Method

We consider GPE in (3+1)D with distributed coefficients [1]:

i∂tu+
β(t)

2
∆u+ χ(t)|u|2u+ α(t)(x2 + y2)u = iγ(t)u. (1)

Here t is time, ∆ = ∂2
x + ∂2

y + ∂2
z is the 3D Laplacian and α(t) stands for

the strength of the quadratic potential as a function of time. The functions
β, χ, and γ stand for the diffraction, nonlinearity, and gain coefficients,
respectively. All coordinates in Eq. (1) are made dimensionless by the
choice of coefficients. It is worth noting that the transverse variable z is no
longer symmetric with respect to the other two transverse variables x and
y.

As described in Ref. [12], we separate the real and imaginary part of u:

u(x, y, z, t) = A(x, y, z, t) exp (iB(x, y, z, t)). (2)

and, after plugging in Eq. (2) into Eq. (1), divide Eq. (1) into the real and
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imaginary part. We now assume the following form for A and B:

A = f1(t)F (θ) + f2(t)F (θ)−1, (3)

θ = k(t)x+ l(t)y +m(t)z + ω(t), (4)

B = a1(t)(x
2 + y2) + a2(t)z

2 + b1(t)(x+ y) + b2(t)z + e(t), (5)

where f1, f2, k, l, m, ω, a1, a2, b1, b2 and e are functions of t to be
determined, and F is an arbitrary Jacobi elliptic function (JEF) satisfying:(

dF

dθ

)2

= c0 + c2F
2 + c4F

4, (6)

where c0, c2 and c4 are constants that depend on the form of the JEF and
the parameter of the JEF M . For F = cn, the JEF we will be using in this
paper, we have c0 = 1−M , c2 = 2M − 1 and c4 = −M . The JEFs are well
suited as an ansatz for nonlinear partial differential equations with terms
containing the third degree of the original function. Function f2 may be
set to 0. In contrast to Ref. [12], the functions next to the quadratic and
linear terms in the phase have been split into two pairs of functions, a1, a2,
b1 and b2 to account for the asymmetry between z and the other transverse
variables.

Applying the F-expansion method and the principle of harmonic balance
[9] we obtain the following system of algebraic and first order differential
equations for fi (i = 1, 2), a1, a2, b1, b2, k, l, m and ω:

dfj
dt

+ (2a1 + a2)βfj − γfj = 0, (7)

dk

dt
+ 2ka1β = 0,

dl

dt
+ 2la1β = 0,

dm

dt
+ 2ma2β = 0, (8)

da1
dt

+ 2βa21 − α = 0,
da2
dt

+ 2βa22 = 0, (9)

db1
dt

+ 2βa1b1 = 0,
db2
dt

+ 2βa2b2 = 0, (10)

dω

dt
+ β((k + l)b1 +mb2) = 0, (11)

de

dt
+

β

2
(2b21 + b22 − (k2 + l2 +m2)c2)− 3χf1f2 = 0, (12)

f1
(
β(k2 + l2 +m2)c4 + χf2

1

)
= 0, (13)

f2
(
β(k2 + l2 +m2)c0 + χf2

2

)
= 0, (14)

3. Results

Now we need to classify solutions based on the forms of the functions α
and β. For the spherically symmetric form of α, the case where α and β
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are constant was covered in Ref. [12], while the case where α and β are
sinusoidal was covered in Ref. [13].

Following the notation established in [13], we obtain the following most
general results:

f1 = f10p1
√
p2 exp

(∫ t

0
γdt

)
, f2 = ϵ

√
c0
c4
f1, (15)

k = p1k0, l = p1l0, m = p2m0, (16)

ω = ω0 − ((k0 + l0)b10q1 +m0b20q2) , (17)

a2 = p2a20, (18)

b1 = p1b10, b2 = p2b20, (19)

e = e0 +
1

2

(
(k20 + l20)(c2 − 6ϵ

√
c0c4)− 2b210

)
q1 + (20)

1

2

(
m2

0(c2 − 6ϵ
√
c0c4)− b220

)
q2,

with a different formula for a1, p1, p2, q1 and q2 in each case. Here, ϵ = 0,±1
and p2 corresponds to the chirp function in [10]. The index ’0’ represents
the value of the given parameter at t = 0. The results in this section are
not for an arbitrary χ, but one subject to an integrability condition:

χ = −β(k2 + l2 +m2)c4f
−2
1 . (21)

For the case where α and β are constants we obtain the following results:

a1 =

√
α

2β

Cept − 1

Cept + 1
, (22)

p1 =
ept/2(1 + C)

1 + Cept
, p2 =

1

1 + 2a20βt
, (23)

q1 =
(1 + C)(ept − 1)

p(1 + Cept)
, (24)

q2 =
βt

1 + 2a20βt
, (25)

where C = (
√

α
2β + a10)/(

√
α
2β − a10) and p = 2

√
2αβ.

For the case where α and β are sinusoidal we obtain the following results,
i.e. α(t) = α0 cos(Ωt), β(t) = β0 cos(Ωt) or α(t) = α0 sin(Ωt), β(t) =
β0 sin(Ωt) (in this case, α0 and β0 stand for amplitudes, not initial values)
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we have the following results:

a1 =

√
α0

2β0
tanh (τ(t)), (26)

p1 =

√
α0

α0 − 2a210β0
sech (τ(t)) , p2 =

1

1 + 2a20
∫ t
0 β(t)dt

, (27)

q1 =

√
α0β0√

2(α0 − 2a210β0)
tanh (τ(t))− a0β0

α0 − 2a210β0
, (28)

q2 =

∫ t
0 β(t)dt

1 + 2a20
∫ t
0 β(t)dt

, (29)

where:

τ(t) = arctanh

(
a10

√
2β0
α0

)
+

√
2α0

β0

∫ t

0
β(t)dt. (30)

For β(t) = β0 cos(Ωt) we have
∫ t
0 β(t)dt = β0

sin(Ωt)

Ω
and for β(t) =

β0 sin(Ωt) we have
∫ t
0 β(t)dt = β0

(
1− cos(Ωt)

Ω

)
.

For this case we can perform a stability analysis similar to one in Section
5 of [16]. The key difference is that now we analyze stability for solitary
waves along the z direction as a separate case, and thus have two distinct
cases: k0 = m0 = 0, l0 = 1 and k0 = l0 = 0, m0 = 1. We also must
specify up front whether k0 = m0 = 0, l0 = 1 or k0 = l0 = 0, m0 = 1
due to the fact that the formula for χ now contains multiple terms, each
with different form of the chirp function. In Eqs. (50) of [16] we must take

p =
√
p21p2 instead of p3/2. For k0 = m0 = 0, l0 = 1 we must take p = p1 in

Eqs. (51)-(54) of [16], while for k0 = l0 = 0, m0 = 1 we must take p = p2
in Eqs. (51)-(54) in order to obtain the form of the GPE with constant
coefficients given in Eq. (55) of [16]. We have thus shown that the same
stability analysis given in [16] can also be performed on the solutions in
this paper. The detailed calculations pertaining to this analysis are beyond
the scope of the paper, but one obtains similar conclusions to those in [16]
for the NLSE and GPE with spherical potential (the latter also covered
in [13]). In any case, it can be concluded that the solutions in this paper
are either unconditionally stable or stable under the regime of dispersion
management. Computer simulations were performed on the solutions to
the NLSE in [10] and the solutions preserved their shape after long runs.

4. Solutions

In this section we analyze the forms of the obtained solutions. As in [12],
the solutions cannot be made to be of stable amplitude unless an external
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Figure 1: (Color online) Solitary and traveling wave solutions for F = cn
as functions of time for α = β = 1. Intensity |u|2 is presented as a function
of: k0x + l0y for (a), (c) and (e) and m0z for (b), (d) and (f). The main
parameters are: (a), (b): M = 1, γ = 0; (c), (d): M = 0.9, γ = 0; (e), (f):
M = 0.9, γ = p/2. The other parameters are: k0 = l0 = m0 = 1, a10 = 1,
a20 = 0, b10 = b20 = 1, ϵ = 0 and ω0 = 0.
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gain is added, even in the absence of chirp. Due to the specific form of
the function, the dependencies of the function on k0x + l0y and m0z are
no longer qualitatively the same, hence these cases must be analyzed and
presented separately. The parameters p1 and p2 are qualitatively similar for
the case of constant α and β, so there is not much of a physical difference
apparent when both are present. A more noticeable difference between
them occurs when a20 = 0.

In Fig. (1) we see the results for the case where α and β is constant. We
see in Fig. (1)(a) and (b) the difference in the two solitary waves, where
we have used M = 1 and F = cn. In both plots, the function decays,
i.e. spreads out, relatively quickly. The slight rightward bend is due to
parameters b10 and b20 being positive.

In Fig. (1)(c) and (d) we see the difference for traveling wave solutions,
i.e. when M < 1. We see that in Fig. (1)(c) the wave front spreads out, as
is the case in [12], while in Fig. (1)(d) the distance between the traveling
waves remains the same.

Finally, in Fig. (1)(e) and (f), we see the effects of adding artificial gain.
Unlike in [12], the value of γ for stable solutions is γ = p/2, due to the
change in the number of transverse variables. In order for the stabilization
to work, we must have a20 = 0. In Fig. (1)(e), we see the dramatically
different effect in comparison with similar plots in [12]. Instead of a wave
front of stable intensity growing wider, we have a radical divergence of
initial waves, which are replaced by a giant oscillating wave whose first
period can be seen on Fig. (1)(e) and which repeats infinitely. On the
other hand, in Fig. (1)(f), we obtain a wave front that doesn’t spread
out and whose intensity converges to a certain value. The result in Fig.
(1)(e) indicates that the artificial addition of gain might not lead to stable
solutions in the case of the 2D potential.

In Fig. (2) we see the solutions for α = α0 cos(Ωt) and β = β0 cos(Ωt),
where α0 = β0 = Ω0 = 1. We see that the oscillatory solutions resemble
those in [13] and, as in Ref. [13], the chirp functions modulate the intensity
and the overall shape of the solutions. Here, each form of chirp affects
both solutions. This suggest that as in the case of the 3D potential, the
dispersion management might be a good approach towards finding stable
solutions.

5. Conclusion

To sum up, we have analyzed the problem of the GP equation for the 2D po-
tential, a scenario relevant for practical applications. We have determined
that the factors corresponding to the NLSE and the GP equation interact
with each other to produce novel and interesting solutions. We established
that the artificial gain approach in [12] does not give the same effect as for
the 3D potential. We also studied the solutions for the sinusoidal varia-
tion of α and β, in other words, the case under dispersion management,
and found that as in [13] one obtains stable solutions. Finally, while the
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Figure 2: (Color online) Solitary wave solutions for F = cn as functions
of time for α = α0 cos(Ωt) and β = β0 cos(Ωt), where α0 = β0 = Ω0 = 1.
Intensity |u|2 is presented as a function of: k0x + l0y for (a) and (c) and
m0z for (b) and (d). For (a), (b): a10 = a20 = 0, and for (c), (d): a10 =
a20 = 0.3. Other parameters are the same as in Fig. (1)(a).
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modulational-stability analysis of these solutions is beyond the scope of this
paper, work done in [13] and [16] is strongly indicates that these forms of
solutions are also modulationally stable.
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1. Introduction

Despite that nonlinearity is the most widespread behavior in the natural
world, the investigation of nonlinear phenomena is far from coming to an
end. Neither physics nor the other scientific fields dealing with nonlinear
evolutionary processes offer complete theories about this important cate-
gory of phenomena or, more precisely, have not formulated a general ap-
proach to study the equations modeling nonlinear evolutionary processes.
They are mainly described by nonlinear differential equations and there
are no clear algorithms for solving these equations. Moreover, the com-
plexity of the nonlinear phenomenology asks for complicated mathematical
models, with higher degrees both in nonlinearity and in the differentiabil-
ity order. Faced with rather complex equations, scientists must give two
fundamental answers: are the equations integrable and, if so, how can they
be solved? The integrability of equations is a problem in itself, but solv-
ing them becomes an even more challenging task [1]. The key word seems
to be ”reduction”. The equations must be reduced, both in terms of the
order of differentiability and of the space (number of degrees of freedom)
in which evolution takes place. The presentation of two methods by which
such reductions can be obtained in a consistent way, and how they can be
used for solving nonlinear differential equations are the main purposes of
this paper.

As we mentioned, a first step in approaching the nonlinear phenom-
ena consists in investigating the integrability of the differential equations
describing them. There are many methods allowing a conclusion on this
issue, as for example: the inverse scattering [2], the Hirota bilinear method
[3], applied both as symmetric and as supersymmetric formalisms [4, 5, 6],
the Lax pair operators [7], or the Lie symmetry theory [8, 9]. After hav-
ing an answer to the question if and when an equation is integrable, the
next step consists in solving it. Unlike the linear differential equations, the
nonlinear equations do not have a single general solution, but can admit
several classes that depend on the values of the parameters appearing in
the equation, as well as on the initial conditions. Finding possible classes
of solutions is essential in a better understanding of the phenomena. Such
an important class is represented by the so-called traveling wave solutions.
They can be accepted by a large class of nonlinear partial differential equa-
tions (NPDEs), but there does not exist a single and clear algorithm for
finding them. Many methods have been proposed in the literature. Part
of them, as for example: the tanh method [10], the tanh-coth method [11],
the F-expansion method [12], the exp-function method [13], are direct solv-
ing methods. Other approaches ask for intermediate tools, as for example
auxiliary equations with known solutions. This second category includes
methods such as: the elliptic function method [14], the extended trial equa-
tion method [15], the functional expansion [16, 17], etc. More sophisticated
and rigorous techniques use the BRST technique defined on cohomological
structures [18, 19], and they are very efficient when constrained dynamical
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systems are concerned [20]. Combined investigations, targeting the inte-
grability but also the finding of solutions are offered by approaches based
on dressing method [21], on imposing specific integrability conditions [22],
or on symmetry group [23].

This paper will refer to two of the mentioned approaches for getting
reduced equations and finding traveling wave solutions. The first one is the
generalized conditional symmetry (GCS) [24, 25], a version of the group
symmetry method providing the invariant solutions of equations on the
base of the similarity reduction. The second approach is a direct solving
method consisting in a reduction, too. The similarity reduction diminishes
the space-time dimension, while this last procedure reduces the differen-
tiability order of the investigated equation. More specifically, the second
approach tackled here is a quite classical method recommended for solv-
ing autonomous ordinary differential equations (ODEs) that is supposed to
define the derivative of the unknown variable as a new independent vari-
able [26]. Due to the fact that this change of variable is expressed by an
equation similar to the one that expresses the flow attached to dynamical
systems, we call the method the attached flow method. Despite its apparent
simplicity, the method sometimes leads to unsolvable or difficult to solve
equations. Our contribution is related exactly to how to deal with such
situations and how to use the method for solving important equations.

The equation we chose as a toy model in this paper is the general-
ized Boussinesq equation (GBE), important due to its application in de-
scribing waves in shallow water, but also the propagation of nerve pulses
through biomembranes. Our aims are to show how the equation can be
solved through this direct method and to compare those got through other
approaches. Results related to the soliton propagation through biomem-
branes were reported in [27] and in other papers. The equation was also
investigated from the perspective of its symmetries, in paper as [28] and
[29]. The GCS method was also applied to GBE in [30]. In fact, the results
obtained in this last paper will be considered as a reference and they will
be compared with what we will get by the attached flow method.

The paper is structured as follows: after this section of Introduction, in
section 2 we will present the generalized Boussinesq equation as a model
of nerve pulse propagation; section 3 will review the main results from the
paper [30], with focus on the GBE invariant solutions; section 4 will contain
the novelty this paper is bringing: GBE will be solved through the attached
flow approach and the solutions will be compared with those presented in
the previous section. Some concluding remarks will end the paper.

2. The Generalized Boussinesq Equation and nerve pulse
propagation

The Generalized Boussinesq Equation (GBE) was first formulated in order
to describe the waves generated in shallow waters. Later on the special-
ists have realized that the equation can also model neural activity, in the
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sense that the propagation of nerve flow can be assimilated with the sound
propagation in biomembranes [27]. The propagation generates significant
changes of the membrane’s density, and the elastic constants become sen-
sitive functions of density. If we consider the one-dimensional propagation,
along the axis Ox, and we denote by ∆ρ the variation of the density, the
suitable equation has the form:

∂2∆ρ

∂t2
=

∂

∂x

(
c2(∆ρ)

∂∆ρ

∂x

)
− h

∂4∆ρ

∂x4
(1)

In the previous relation c2 represents the square of the pulse velocity in
the membrane and the notation c2(∆ρ) express its dependency of the den-
sity variation. The last term in (1) , proportional with the fourth-order
derivative of the density variation, describes the dispersion that accompa-
nies the propagation and that makes possible soliton-type solutions. With
simplified notation, the previous equation can be rewritten as:

∂2u

∂t2
=

∂

∂x
(A(u)

∂u

∂x
)− h

∂4u

∂x4
(2)

By making few computations, and putting A′(u) as the derivative in respect
to u, we get:

u2t −A′(u)u2x −A(u)u2x + hu4x = 0 (3)

It is a fourth order partial differential equation with variable coefficients,
known as the Generalized Boussinesq Equation. We remember that A(u)
denotes the square of the pulse velocity. If, in the first approximation,
we consider A(u) = c20 = const., A′(u) = 0, we get the case of waves
propagating with the constant velocity c0. The usual Boussinesq equation
is obtained in the case when Au) has a linear dependency on u: A(u) =
c20 + βu, and A′(u) = β = const. In [30] it was considered the case of a
quadratic dependency:

c2(u) ≡ A(u) = αu2 + βu+ c20. (4)

The parameters α, β describe the nonlinear elastic properties of the mem-
brane. The case α = 0 brings us back to the already known Boussinesq
equation.

3. Symmetry reduction and Invariant solutions for the gen-
eralized Boussinesq equation

3.1. The generalized conditional symmetry method

The generalized conditional symmetries represent an extension of the classi-
cal Lie-type symmetries. The symmetry generators can include now deriva-
tives of the dependent variable. Let us consider a general (1+1)-dimensional
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partial differential equation of the form (3), to which we attach the vector
field X and its prolongation of order n:

X = η(t, x, u, ux, u2x, ...)
∂

∂u
(5)

X̃(n) =

n∑
k=0

Dk
xη

∂

∂ukx
+Dtη

∂

∂ut
+D2

t η
∂

∂u2t
, (6)

As (3) is a 4-order differential equation, we say that (5) is a Lie–Bäcklund
symmetry for it if:

X̃(4)[u2t −A′(u)u2x −A(u)u2x + hu4x] |L = 0,

where L is the set of all the differential consequences of the concerned
equation. The vector field (5) is said to be a GCS of Eq. (3) if

X̃(4)[u2t −A′(u)u2x −A(u)u2x + hu4x] |L∩M = 0, (7)

where M denotes the manifold defined by the set of all the differential
consequences of the equation η = 0, that is to say:

Dµ
t D

ν
xη = 0, µ+ ν ≤ m. (8)

These general definitions can be used for finding the generalized conditional
symmetry operators of the Eq. (3) and for generating invariant solutions
for the model. A few of the results presented there will be reviewed in the
next subsection and will be compared with what we will get through the
attached flow method in section 4 from below.

3.2. Invariant solutions for pulse velocities depending on the
density variation

As we have announced, we will review now the main invariant solutions
obtained in [30], when the equation (3) was investigated using the general-
ized conditional symmetry (GCS) technique. Four cases that differ in how
the propagation velocity depends on the variation of the membrane density
will be considered:

Case 1. For A(u) = c20 = const., one of the possible Lie symmetry
operator generated by imposing the GCS requirements is:

X1 = (u2x − p)
∂

∂u
. (9)

The corresponding solution for (3) is in fact a 5-parameter family of solu-
tions, described by the parameters p, qj , j = 1, 4 and with the expression:

u1(t, x) =
p

2
x2 + (q1t+ q2)x+

p

2
c20 t

2 + q3t+ q4. (10)
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Case 2. Again for A(u) = c20 = const., another possible symmetry
operator is:

X2 = [u2x − kux − p]
∂

∂u
. (11)

The reduced equation arising from (3) in this case accepts the following 8-
parameters family of periodic solutions, defined by the arbitrary constants
p, h, k, c0, (with hk

2 ⟩ c20 ⟩ 0), and ri, i = 1, 4 :

u2(t, x) = r1t+r2+
r3 sin

[
k
√
hk2 − c20 t

]
+ r4 cos

[
k
√
hk2 − c20 t

]
k

ekx− p

k
x.

(12)
Case 3. A more general symmetry operator corresponding to the same

case, when A(u) = c20 = const., has the form:

X3 = [u2x − kux −mu− p]
∂

∂u
. (13)

Solving the invariance surface condition, that in this case has the form
η = u2x − kux −mu − p = 0, many solutions of the reduced GBE can be
generated. We mention here only two of them:

u31(t, x) = − p

m
+ φ(t) exp

[(
k +

√
k2 + 4m

2

)
x

]

+ψ(t) exp

[(
k −

√
k2 + 4m

2

)
x

]
,

(14)

u32(t, x) = − p

m
.+
[
µ exp

(
i
√
Mt
)
+ ν exp

(
−i

√
Mt
)]

exp

[(
k −

√
k2 + 4m

2

)
x

]
.

(15)

Depending of the values of the parameters p,m, k, and, respectively, p,m,M, µ, ν,
these general solutions lead to periodic or hyperbolic solutions of (3).

Case 4. Consider now that A(u) is quadratic, of the form given by
(4). The symmetry operators from the previous case take now simpler
expressions, and, as a result, the GBE solutions will become simpler. For
example, the operator X1 takes in this case the form:

X4 = u2x
∂

∂u
. (16)

The 5-parameters family of solutions from the Case 1 takes now the form:

u4(t, x) = ±
√
2√

a(t− n1)
x+ n2(t− n1)

2 − bt

a(t− n1)
+

n3
(t− n1)

. (17)



274 R. Cimpoiasu, R. Constantinescu, G. Florian, A. Pauna

3.3. Traveling waves with the auxiliary equation technique

Obtaining traveling wave solutions for a (1+1)-dimensional PDE supposes
a standard algorithm with two steps: (i) reducing the PDE to an ODE, by
introducing the wave variable ξ ≡ x− vt; (ii) solving the reduced equation
by an adequate method, as we mentioned in Introduction. For (3) the
algorithm leads to the following:

(i) Denoting by U(ξ) the new variable and by U ′ = dU/dξ, the resulting
ODE will take the form:

(A(U) + v2)U ′′ +A′
U (U) (U ′)2 − hU (4) = 0. (18)

(ii) If we consider, as second step, the auxiliary equation technique, the
simplest choice is to use the Riccati equation:

G′ = βG+ δG2, (19)

which accepts a solution of the form:

G(ξ) = ± β exp(βξ)

1∓ δ exp(βξ)
(20)

A specific balancing procedure shows that the solution of (18) can be ex-
pressed in terms of the Riccati solutions G(ξ) in the form:

U(ξ) = k0 + k1G(ξ)

Let us supplementary suppose that we look to solutions of (18) in the form
of low-amplitude waves with the frequency ω,propagating with a velocity
v which depends on the frequency as:

v2 ≈ c20 +
hω2

c20
. (21)

Combining all these relations, we find that, for real parameters a, b, h, β, δ,
possible solutions of GBE (18) have the form:

U(ξ) =
−b± β

√
6ah

2a
± δ

√
6ah

a

β exp(βξ)

1∓ δ exp(βξ)
(22)

Similar solutions will be generated in the next section, using the more
simple and direct approach of the attached flow.
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4. The reduction method through attached flows

4.1. What attached flow means?

We mentioned above the two steps algorithm allowing us to find traveling
wave solutions for nonlinear PDEs as the generalized Boussinesq equation
is. Moreover, we effectively followed the algorithm and, after the first step,
we got the reduced equation (18). For the second step, we applied the
auxiliary equation technique and we get a general form of the traveling
wave solutions as (22). Now, we want to see if using auxiliary equations
or other auxiliary tools is the only way to solve the equation. A specific
possibility of direct solving an autonomous ODE, as it is the case of (18),
mentioned in almost all mathematics textbooks as for example in [26],
consists in the reduction of the differentiability order by considering the
first derivative of the unknown variable as a new independent variable. In
our case we should define:

U ′(ξ) = V (U). (23)

The initial equation in U(ξ) turns into a system consisting of equation (23)
and a new differential equation, with the unknown V (U) and the order of
differentiation reduced by one unit. We should find V (U) solving this new
equation, and, then, find U(ξ) solution of (23). As this equation suggests
the flow equation attached to the dynamical systems, we proposed to call
this solving method the attached flow method.

Despite the apparent simplicity of the procedure, it seems that system
integration is not always easy, usually the reduced equation falling, it too,
into the class of equations difficult to solve. Additional considerations and
improvements are needed. Here are our contributions, in establishing, after
an exhaustive investigation, of ”go” or ”not go” rules and special algorithms
to be followed in each specific case. We do not insist too much on the
theoretical aspects here, focusing instead on illustrating how the method
can be effectively applied to solve the GBE equation. The two cases that we
analyzed in the previous section will be addressed here as well. It is about
the case when the propagation of the neural flow is done with constant
velocity, c0, and the case when there is a quadratic dependence on the
density variation, as described by the relation (4).

4.2. Attached flow for the Boussinesq equation

As we mentioned in section 2, the usual Boussinesq equation is obtained
from (3) in the case when we consider that the square of velocity depends
linearly from the variation of density. This means that we have to consider:

α = 0 ⇒ A(u) = c20 + βu; A′(u) = β.

The equation (3) takes the form:

u2t − βu2x − (c20 + β u)u2x − hu4x = 0 (24)
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The ODE resulting when the wave variable is used in (24) can be integrated
twice and leads to the following second order ODE:

hU ′′ +
β

2
U2 + (c20 − v2)U = 0 (25)

It is here where the attached flow appears. By considering that U ′ = V (U),
we obtain a new, first order, equation for V :

hV (U)V ′(U) +
β

2
U2 + (c20 − v2)U = 0 (26)

This equation can be integrated and leads to:

V (U) = ±
√

−3hU [βU + 3(c20 − v2)]

3h
(27)

Coming back to the flow equation (23), by integration we get the traveling
wave solution of Boussinesq equation:

U(ξ) = −
3
(
c20 − v2

)
β cosh

(
ξ
√

−h(c20−v2))
2h

) (28)

The corresponding solution expressed in the initial (1+1)-dimensional space
will have the form:

u(x, t) = −
3
(
c20 − v2

)
β cosh

(
(x−vt)

√
−h(c20−v2)
2h

) (29)

4.3. Attached flow for the generalized Boussinesq equation

We consider now the general case, when A(u) is quadratic as in the relation
(4). The equation (3) becomes:

u2t − (2αu+ β)u2x − (αu2 + βu+ c20)u2x − hu4x = 0 (30)

Using the wave transformation and adopting the notation u(x, t) = U(ξ),
the above equation becomes:(

αU2 + βU + c20 − v2
)
U ′′ + (2αU + β)U ′2 + hU (4) = 0 (31)

By integrating twice with respect to ξ, we will get the following second
order equation:

hU ′′ +
α

3
U3 +

β

2
U2 + (c20 − v2)U = 0 (32)
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Now, using the flow equation, U ′ = V (U), we obtain the reduced equation
for the new variable V :

hV (U)
dV (U)

dU
+
α

3
U3 +

β

2
U2 + (c20 − v2)U = 0 (33)

By chance, (33) can be integrated and gives the solutions:

V (U) = ±
√

−6hU [αU2 + 2βU + (c20 − v2)]

6h
(34)

Considering these solutions for V (U), we integrate (23) and we get the
solution U of the ODE:

U(ξ) =
144h(c20 − v2)(coshB + sinhB)

(24hβ + 1)(coshB + sinhB) + 144h2[β2 − 6α(c20 − v2)]
(35)

where

B =
ξ
√
−h(c20 − v2)

h
. (36)

5. Concluding remarks

The complexity of the nonlinear evolutionary phenomena asks for the for-
mulation of increasingly complex mathematical models and requires the
processing of increasingly complicated equations. To deal with these mod-
els, to check the integrability and solvency of the equations that describe
them, there is, as a way out, the use of various reductions and simplifi-
cations methods. All these have to be consistent, in the sense that the
reduced equations must retain all the dynamic characteristics of the initial
model. Two types of reductions are essential: (i) reducing the number of
independent variables, leading from PDEs to ODEs, equations easier to
solve, and (ii) reducing the order of differentiation of equations, which also
facilitates their solving. The present paper considers these two reductions
in relation to the generalized Boussinesq equation (3), a 4-order PDE de-
fined in the (1+1)-dimensional space-time. Its reduction to an ODE can be
obtained directly, by the use of the wave variable, when traveling waves are
the only solutions we look for, or it can be achieved through a more general
approach based on the symmetry group theory. This approach allows, on
the one hand to determine the invariants and to decide on the integrability,
and on the other hand to generate solutions of the investigated equations
that do not belong to the class of traveling waves. We applied here the
generalized conditional symmetry approach and, starting from a few sym-
metry operators, we generated non-traveling wave solutions, as for example
the solutions (10) and (12). When, in section 3.3, the space-time reduction
was obtained with the wave variable, and the auxiliary equation method
was used to solve the ODE, the solution obtained, (22), was of the traveling
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wave type. It was expressed through exponentials, and, depending on the
parameters from the equation, can become periodic, hyperbolic or rational
solutions.

Quite similar solutions were generated in section 4 of the paper, when
the ODE generated by the use of the wave variable was solved directly,
using a sort of constraint, the flow equation (23). The presentation of this
approach was important due to the fact that, despite its simplicity and
almost unanimous consideration in mathematical textbooks, the actual ap-
plication is not always very direct and requires case-by-case analysis. In the
GBE case for example, the reduction generated by the attached flow led
to the Abel-type equations, (26) and (33), whose solving sometimes raises
problems.Here we pointed out that, fortunately, both classical and gen-
eralized Boussinesq equations could be fully integrated, and the solutions
obtained are compatible with the solutions of the same equations, gener-
ated by alternative methods. For example, the solution (35), up to the level
of constants, has the same mathematical form as the solution (22), gener-
ated somewhat more complicatedly, using Riccati as an auxiliary equation.
As a conclusion, given the simplicity and efficiency of the attached flow
method, we believe that it deserves a closer investigation to which we have
committed ourselves. The results will be presented in forthcoming papers.
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Abstract

In this paper, we consider a new type of scalar matter that could have its origin
in p-adic strings, i.e., strings with a p-adic world-sheet. In particular, we explore
some cosmological properties of this p-adic matter. We start with crossing symmet-
ric scattering amplitudes for p-adic open strings and proceed with related effective
nonlocal Lagrangian which describes dynamics of the corresponding tachyon at the
tree level. Then, we make a slight modification of this Lagrangian to obtain a new
Lagrangian for non-tachyonic scalar field. Using this new Lagrangian in the weak
field approximation as a matter sector in Einstein gravity with the cosmological
constant, one obtains an exponentially expanding FLRW closed universe. Also
one obtains the connection between mass of this scalar particle, the cosmological

constant and prime numbers. For small prime numbers, mass m =
√

Λ
3 ∼ 10−66g.

At the end, we discuss the obtained results, and conjecture that this scalar particle
can be a candidate for dark energy and dark matter.

1. Introduction

Recall that p-adic numbers were discovered by K. Hansel in 1897. Their first
use in modeling physical systems was started by I. V. Volovich [2] in 1987,
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when he was constructed some string scattering amplitudes, see also [3].
This was the beginning in p-adic string theory and also in many other parts
of modern mathematical physics — now known as p-adic mathematical
physics. As reviews, we refer to [4, 5, 6, 7].

Note that classical theoretical physics and quantum theory use mathe-
matical methods based on real and complex numbers, respectively. Quan-
tum mechanics combined with general relativity predicts the Planck length
as the smallest one that can be measured [5]. This practically means break-
down of the Archimedean axiom and the problem with employment of real
and complex numbers at the Planck scale. Thus, the following question
arises: are there some other numbers that could be relevant when approach-
ing to the Planck scale? A possible answer could be related to Volovich’s
hypothesis [8] which assumes that space–time, at very short distances, may
be non-Archimedean and p-adic numbers should play some significant role.
Then string worldsheet may be not only real but also p-adic. Replacing the
real worldsheet by its analog with p-adic numbers some new string ampli-
tudes where constructed. Strings with p-adic-valued worldsheet are called
p-adic strings.

The mainstream in p-adic string theory was along an effective La-
grangian [9, 10] for the scalar field, that describes all scattering amplitudes
on the tree level, see [4, 5, 6, 7] as a review. This Lagrangian does not
contain p-adic ingredients, but only real terms. Hence there is no need to
know and use p-adic analysis, what simplifies further elaboration of p-adic
string theory. The Lagrangian (10) is exact at the tree level and contains
a scalar tachyon field with a nonlocal kinetic term and nonlinear potential.
The research presented in this paper is based on this effective Lagrangian.

As one of the several connections of p-adic strings with ordinary strings
is an adelic product formula of ordinary and p-adic crossing symmetric
Veneziano amplitudes [13, 14] (see next section). Despite interesting con-
nections, p-adic strings have been mainly treated as auxiliary ones with
respect to ordinary strings. Since there is belief that ordinary matter has
its origin in ordinary strings, then why p-adic strings could not generate
p-adic matter? In this paper, we consider how non-tachyonic matter can be
obtained from Lagrangian for p-adic tachyons and demonstrate that this
new matter makes sense.

This article is organized as follows. In Section 2, some basic facts about
p-adic numbers, adeles, scattering amplitudes of open p-adic strings and an
effective nonlocal Lagrangian with the corresponding equation of motion
are presented. Section 3 is devoted to the Lagrangian for p-adic strings
which is slightly modified to obtain the well-defined new one. The dynamics
of p-adic scalar particles is considered in weak field approximation and a
cosmological solution is found and presented in the case of a closed universe
fulfilled by p-adic matter with the cosmological constant. Some concluding
remarks are the subject of Section 4.
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2. On mathematical background and p-adic strings

To have this article comprehensive and self-contained, we are now recalling
some basic facts about p-adic numbers, adeles, their functions and p-adic
strings.

2.1. p-Adic numbers, adeles and their functions

For those who are not familiar with p-adic numbers, adeles and their func-
tions, here are some basic introductory facts. To this end, it is useful to
start with the field of rational numbers Q, since Q is important from a phys-
ical and mathematical point of view. In physics, all numerical results of
measurements are rational numbers. In mathematics, Q is a simple infinite
number field. For a given prime number p, any non-zero rational number
x can be presented as x = a

bp
ν , where a, ν ∈ Z and b ∈ N, also a and b

are not divisible by p. Then, by definition, the p-adic norm (also called
p-adic absolute value) is |x|p = p−ν and |0|p = 0. One can easily show
that |a|p ≤ 1, for any a ∈ Z and any prime p. From the above definition,
it follows the strong triangle inequality |x+ y|p ≤ max{|x|p, |y|p}, i.e., the
p-adic norm is an example of ultrametric (non-Archimedean) norm. The
p-adic distance between x, y ∈ Q is dp(x, y) = |x−y|p. In the same manner,
as the field R of real numbers obtains from Q by completion with respect
to the real distance d(x, y) = |x− y|, so the completion of Q using a p-adic
distance gives the field Qp of p-adic numbers, for any prime number p.

Any non-zero p-adic number 0 ̸= x ∈ Qp has unique representation in
the following form:

x = pν
(
x0 + x1p+ x2p

2 + ...
)
, ν ∈ Z, x0 ̸= 0, xn ∈ {0, 1, ..., p− 1},

(1)

where xn are digits. For instance, −1 = p − 1 + (p − 1)p + (p − 1)p2 + ...
for any given prime number p.

There are mainly two kinds of functions with p-adic argument, (i) p-
adic-valued functions and (ii) complex-valued functions. For example, p-
adic-valued elementary functions are defined by the same power series as in
the real case, but their convergence is subject to the p-adic distance. There
are three typical complex-valued functions of the p-adic argument x:

� multiplicative character: πp(x) = |x|cp, c ∈ C;
� additive character: χp(x) = exp(2πi{x}p), where {x}p is a fractional
part of x;

� characteristic function: Ω(|x|p) =
{
1 if |x|p ≤ 1,

0 if |x|p > 1.

There is a well-defined integration of complex-valued functions with the

Haar measure, see [5]. For example,
∫
|x|p≤1 |x|

a−1
p = 1−p−1

1−p−a , where x is a

p-adic variable and a is a complex number, with ℜa > 0.
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According to the Ostrowski theorem, real and p-adic numbers are all
possible numbers that can be obtained by completion of Q with respect to
any nontrivial norm on Q. Q is a common subfield of R and all Qp.

Adeles are a concept that takes together real and p-adic numbers. By
definition, an adele is the following infinite sequence:

α = (α∞, α2, α3, ..., αp, ...), (2)

where α∞ ∈ Q∞ ≡ R and, for all but a finite set P of primes p, it must be
satisfied that xp ∈ Zp ≡ {x ∈ Qp : |x|p ≤ 1}. Zp is called a ring of p-adic
integers. The set AQ of all adeles over Q can be defined as

AQ =
⋃
P

A(P), A(P) = R×
∏
p∈P

Qp ×
∏
p/∈P

Zp. (3)

AQ is called an adele ring, since it satisfies component-wise addition
and multiplication. Note that the components of an adele can be a rational
numbers; thus, Q is naturally embedded in AQ. Hence, adeles can be
viewed as a generalization of rational numbers that takes simultaneously
into consideration all their completions.

There are many useful adelic product formulas which connect real and
all p-adic constructions of the same form; e.g., see [5]. Some simple cases
are:

� π∞(x)
∏

p πp(x) = |x|
∏

p |x|p = 1 , 0 ̸= x ∈ Q;

� χ∞(x)
∏

p χp(x) = e−2πix
∏

p e
2πi{x}p = 1, x ∈ Q.

In the next subsection, we present adelic product formulas for string
amplitudes.

Above, some very basic properties of p-adic numbers and adeles are
presented. For more information, we refer to books [5, 15, 16].

2.2. p-Adic open string amplitudes

Note that string theory started with the Veneziano amplitude. By defini-
tion, the crossing symmetric Veneziano amplitude for the scattering of two
ordinary open strings is

A∞(a, b) = g2∞

∫
R
|x|a−1

∞ |1− x|b−1
∞ d∞x (4)

= g2∞
ζ(1− a)

ζ(a)

ζ(1− b)

ζ(b)

ζ(1− c)

ζ(c)
, (5)

where a, b, c ∈ C are related to kinematical quantities with a condition
a+ b+ c = 1, | · |∞ denotes the usual absolute value and ζ is the Riemann
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zeta function. Then, the analogous p-adic Veneziano amplitude is defined
as follows [3]:

Ap(a, b) = g2p

∫
Qp

|x|a−1
p |1− x|b−1

p dpx (6)

= g2p
1− pa−1

1− p−a

1− pb−1

1− p−b

1− pc−1

1− p−c
, (7)

where a, b and c are the same quantities as in the above real case. It
is obvious that the amplitude in (7) is symmetric under any interchange
among a, b and c. Note that the form of expressions (4) and (6) is the same
and contains analogous ingredients. Only the integration is different–along
a real axis in (4) and over Qp in (6). On the integration of the p-adic
integral in (6), one can see [4, 5]. Finally, one can say that the difference
between p-adic and ordinary strings is in their world-sheets, i.e., p-adic and
real world-sheets, respectively. Both these kinds of strings are related to
tachyons [4].

Taking the product of (7) over all primes and using the Euler expression
of the Riemann ζ function, one obtains the Freund–Witten formula [13] for
the above Veneziano amplitudes:

A(a, b) = A∞(a, b)
∏
p

Ap(a, b) = g2∞
∏
p

g2p = const. (8)

Formula (8) tells us: (a) that the amplitudes of the above p-adic and
ordinary strings are connected on equal footing, (b) that they may be dif-
ferent faces of an adelic string and (c) that complicate ordinary amplitude
with the Riemann zeta function can be expressed as the infinite product of
inverse p-adic amplitudes, which are simpler and elementary functions.

By a similar procedure one can define the amplitudes for p-adic closed
strings and the corresponding adelic formula also exists; as a review, see [4].

2.3. Effective field theory for p-adic open strings

It is very important that there is an effective field theory model which can
reproduce the p-adic string amplitudes in (7). The corresponding action [9,
10] for the scalar field φ(x) in D-dimensional Minkowski space is

Sp = σp

∫
dDx

(
− 1

2
φ p−

1
2m22 φ+

1

p+ 1
φp+1

)
, (9)

where σp = mD

g2p

p2

p−1 , p is any prime number and 2 = − ∂2

∂t2
+

∑D−1
i=1

∂2

∂xi2
is

the d’Alembert operator (c = 1) in D-dimensional space-time. Note that
action (9) is invariant (symmetric) under discrete transformation φ → −φ
if the prime number p ≥ 3 and is asymmetric when p = 2. Field φ and mass
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parameter m can also depend on the prime p, but, for simplicity, we omit
index p. A similar, effective field theory was also constructed for closed
p-adic strings. This model (9) describes not only four-point scattering
amplitudes (7) but also all higher (Koba-Nielsen) ones at the tree-level.

The corresponding Lagrangian

Lp = σp

(
− 1

2
φ p−

1
2m22 φ+

1

p+ 1
φp+1

)
, (10)

contains a nonlocal kinetic term with infinitely many space-time derivatives

in the form p−
1

2m22 and nonlinear potential with φp+1 self-interaction.
The equation of motion (EoM) related to Lagrangian (10) is

p−
1

2m22φ ≡ e−
ln p

2m22φ = φp. (11)

There are trivial solutions φ = 0,+1 for any p as well as φ = −1, when
p ̸= 2. In the Minkowski space, there is a nontrivial homogeneous and
isotropic time-dependent solution

φ(t) = p
1

2(p−1) exp
( p− 1

2p ln p
m2t2

)
(12)

and also an inhomogeneous solution in any spatial direction xi

φ(xi) = p
1

2(p−1) exp
(
− p− 1

2p ln p
m2(xi)2

)
. (13)

In D-dimensional space-time, the solution is [12]

φ(x) = p
D

2(p−1) exp
(
− p− 1

2 p ln p
m2 x2

)
, x2 = −t2 +

D−1∑
i=1

(xi)2. (14)

The solution in (12) can be obtained employing the identity

eA∂2
t eBt2 =

1√
1− 4AB

e
Bt2

1−4AB , 1− 4AB > 0. (15)

All the above solutions of EoM (11) are unstable [17].
The corresponding potential Vp(φ) = −Lp(2 = 0) of Lagrangian (10)

is

Vp(φ) = σp

[1
2
φ2 − 1

p+ 1
φp+1

]
, (16)

which has local minimum Vp(0) = 0 for all p and local maxima V2(1) =
σ2
6

and Vp(±1) = σp
p−1

2(p+1) , when p ̸= 2. When p = 2 and p = 3, these
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Figure 1: The 2-adic string potential V2(φ) (on the left) and 3-adic poten-
tial V3(φ) (on the right) of standard Lagrangian (10), where potential is
presented by expression (16) with σp = 1.

potentials are illustrated at Figure 1. When p ̸= 2, all potentials are an
even (symmetric) function of φ.

Let us consider the above scalar field φ in a vicinity of its unstable value
φ = 1, i.e., let us take φ = 1+ η, where |η| ≪ 1. Then, EoM (11) becomes

p−
1

2m22(1 + η) = (1 + η)p ≈ (1 + p η), =⇒ p−
(

M2

2m2+1
)
η = η, (17)

which gives M2 = −2m2, i.e., the scalar field η (φ) presents a tachyon.

3. Scalar p-adic matter

We are now going to slightly modify Lagrangian (10) with the intention to
obtain a new Lagrangian for a similar scalar particle which is not a tachyon.
Another direction of research based on Lagrangian (10) is towards zeta
strings that take into account the effects of p-adic strings over all primes p;
see [18] and references therein.

3.1. Non-tachyonic p-adic scalar field in Minkowski space

For a prime p, let us consider the transition −m2 → m2 in (10); see also
consideration in [1, 19, 20]. To differ from a tachyon, we denote this new
scalar p-adic field by ϕ. Note that, by replacing −m2 with m2, the new
related Lagrangian becomes

Lp(ϕ) = (−1)
D
2 σp

[
− 1

2
ϕ p

2

2m2 ϕ+
1

p+ 1
ϕp+1

]
, (18)
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where the change σp → (−1)
D
2 σp is taken into account. Depending on

space-time dimensionality D, we have

(−1)
D
2 =


+1 if D = 4k

−1 if D = 4k + 2

+i if D = 4k + 1

−i if D = 4k + 3,

(19)

where k ∈ N. According to (19), it follows that Lagrangian (18) can be real
only when space-time dimensionality D = 2, 4, 6, ... Note that the kinetic
term is positive when D = 4k+2, i.e., including D = 10 and 26, which are
critical dimensions in string theory.

The equation of motion for the scalar field ϕ is

p
2

2m2 ϕ = ϕp (20)

and it has the same trivial solutions as the previous field φ, i.e., ϕ = 0 and
ϕ = 1 for any p and ϕ = −1, if p ̸= 2. There are also nontrivial solutions,
such as (12)–(14), where one has to replace m2 with −m2.

When D = 2 + 4k, Lagrangian (18) is

Lp(ϕ) = σp

[1
2
ϕ p

2

2m2 ϕ− 1

p+ 1
ϕp+1

]
, (21)

and the corresponding potential becomes

Vp(ϕ) = σp

[ 1

p+ 1
ϕp+1 − 1

2
ϕ2

]
. (22)

Note that, now, Lp(ϕ) = −Lp(φ) and Vp(ϕ) = −Vp(φ).
The trivial solutions of EoM (20) have the following meaning: ϕp = 0 is

a local maximum and ϕ2 = +1 and ϕp = ±1, with p ̸= 2, are local minima;
see also Figure 2.

Let us consider field ϕ around minima ϕ = ±1. For example, let ϕ =
1 + θ in the case when D = 2 + 4k. Then, the EoM for weak field θ, i.e.,
|θ| ≪ 1, becomes

p
2

2m2 (1 + θ) = (1 + θ)p, ⇒ p
2

2m2 θ = p θ. (23)

Let us look for a solution of EoM p
2

2m2 θ = p θ in some detail. In fact,
we have equation

e
ln p

2m22 θ =
(
1 +

ln p

2m2
2+

( ln p
2m2

)222

2!
+ ...

)
θ = p θ, (24)



288 B. Dragovich

-1 1 2
Φ

-1.5

-1

-0.5

0.5

1

1.5
V2

-2 -1 1 2
Φ

-1.5

-1

-0.5

0.5

1

1.5
V3

Figure 2: New potentials V2(ϕ) and V3(ϕ), which are defined by (22). This
is the same potential as in Figure 1, but with opposite sign.

which has a solution when the following Klein-Gordon equation is satisfied:

(2− 2m2) θ = 0, where 2 = − ∂2

∂t2
+

D−1∑
i=1

∂2

∂xi2
(25)

and we have that θ ∼ e±i(−Et+k⃗x⃗) is a scalar field with E2 = 2m2 + k⃗2.
The above consideration is related to a scalar field in the D-dimensional

Minkowski space. In the next subsection, we want to study some cosmo-
logical aspects of field θ in 4-dimensional space–time.

3.2. A closed universe with p-adic matter

Let us start with a 4-dimensional gravity with a nonlocal scalar field ϕ and
cosmological constant Λ, given by the Einstein-Hilbert action

S = γ

∫ √
−g d4x (R− 2Λ) + Sm, (26)

where γ = 1
16πG , R is the Ricci scalar and

Sm = σ

∫ √
−g d4x

(1
2
ϕF (2)ϕ− U(ϕ)

)
, (27)

where F (2) =
∑∞

n=0 fn 2n is a nonlocal operator and U(ϕ) is a part of the

potential. Note that, now, 2 = ∇µ∇µ = 1√
−g

∂µ
√
−ggµν∂ν .

According to the variation in action (26), with respect to δgµν and δϕ
and the principle of least action, the equations of motion for gravity field
gµν and scalar field ϕ are as follows:

γ(Gµν + Λgµν)−
σ

4
gµν ϕF (2)ϕ+ gµν

σ

2
U(ϕ) +

σ

4
Ωµν(ϕ) = 0, (28)

F (2)ϕ− U ′(ϕ) = 0, (29)
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where

Ωµν(ϕ) =
∞∑
n=1

fn

n−1∑
ℓ=0

[
gµν

(
∇α2ℓϕ∇α2

n−1−ℓϕ+2ℓϕ2n−ℓϕ
)

− 2∇µ2
ℓϕ∇ν2

n−1−ℓϕ
]
. (30)

For details about the derivation of equations of motion (28), one can
see [21].

As a matter, I take the p-adic scalar field given by its action (21)

Sp = σp

∫ √
−g d4x

(1
2
ϕ p

1
2m22 ϕ− 1

p+ 1
ϕp+1

)
, (31)

where, again, σp =
mD

p

g2p

p2

p−1 and p is a prime number. Note that in (31), the

space-time is 4-dimensional and the signs in the Lagrangian are those as in
the case D = 4k + 2. The reason for this choice is to have the correct sign
in front of the kinematic term.

The equation of motion for p-adic field ϕ has the same form as the
previous one, (20), i.e.,

p
1

2m22ϕ ≡ e
ln p

2m22ϕ = ϕp, (32)

but 2 now depends on the gravity field gµν . It has the same trivial solutions,
as in the Minkowski space-time.

The potential Vp(ϕ) is already given by expression (22) and V2 and V3

are presented in Figure 2.
In the sequel, we are interested in cosmological solutions of the equations

of motion (28) and (29) in the homogeneous and isotropic space given by
the Friedmann-Lemâıtre-Robertson-Walker (FLRW) metric

ds2 = −dt2 + a(t)
( dr2

1− kr2
+ r2 dθ2 + r2 sin2 θ dφ2

)
, (33)

where a(t) is the cosmic scale factor and k = 0,+1,−1 for the plane, closed
and open universe, respectively. Owing to the symmetries, there are only
two independent equations of motion (28), which can be the trace

4Λ−R− σϕF (2)ϕ+ 2σU(ϕ) +
σ

4
Ω = 0 (34)

and 00-component

γ(G00 − Λ) +
σ

4
ϕF (2)ϕ− σ

2
U(ϕ) +

σ

4
Ω00(ϕ) = 0, (35)
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where Ω = gµνΩµν . We will return to (34) and (35) after some elaboration
of the EoM for field ϕ in (32).

Let us look for a solution of (32) in a weak field approximation around
local minimum ϕ = 1, that is, ϕ = 1 + θ, where |θ| ≪ 1. As in (23), again,
we have

p
2

2m2 (1 + θ) = (1 + θ)p, ⇒ p
2

2m2 θ = p θ, (36)

where, now,

2 = − ∂2

∂t2
− 3H

∂

∂t
, H =

ȧ

a
(37)

and H is the Hubble parameter.
Equation

p
2

2m2 θ = p θ (38)

has solution if there is a solution of 2θ = 2m2θ, i.e.,

∂2θ

∂t2
+ 3H

∂θ

∂t
+ 2m2θ = 0, (39)

where the Hubble parameter H = ȧ/a may be a function of cosmic time,
which depends on the scale factor a(t). The simplest case is H = constant
and it corresponds to the scale factor a(t) = AeHt. When H is constant,
equation (39) is a linear differential equation with constant coefficients and
has solution in the form θ(t) = C eλt, where λ must satisfy the quadratic
equation

λ2 + 3Hλ+ 2m2 = 0. (40)

The solution of equation (40) has the form λ1,2 =
−3H±

√
9H2−8m2

2 , where
H and m can be connected as H = ±m, which yields the simple solutions
λ± = ±m. It follows that the general solution of equation (39) can be
written in the form

θ(t) = C− e−mt + C+ e+mt = θ−(t) + θ+(t), (41)

where C− and C+ are integration constants. Note that H and λ must have
opposite sign. Hence, we have the following pairs:(

a+(t), θ−(t)
)
: a+(t) = A+e

+mt, θ−(t) = C−e
−mt, (42)(

a−(t), θ+(t)
)
: a−(t) = A−e

−mt, θ+(t) = C+e
+mt, . (43)

The next step is to explore how the solution in (41) satisfies the cor-
responding equations of motion for a gravitational field. To this end, we
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have to rewrite the Einstein–Hilbert action with weak field approximation
for scalar field ϕ, i.e., we have to rewrite (26) in terms of field θ. The
corresponding action is

S = γ

∫
d4x

√
−g (R− 2Λ) + σp

∫
d4x

√
−g

(1
2
θp

2

2m2 θ − p

2
θ2 + αp

)
,

(44)

where αp =
p−1

2(p+1) .

The potential Vp(θ) = −Lp(2 = 0) is

Vp(θ) = σp
(p− 1

2
θ2 − αp

)
(45)

and it has the form resembling that of the harmonic oscillator.
We can now return to the equations of motion (34) and (35). With the

relevant replacements

ϕ → θ, σ → σp, U(θ) =
p

2
θ2 − αp, (46)

we have

γ(4Λ−R)− σp θF (2)θ + 2σp (
p

2
θ2 − αp) +

σp
4

Ω = 0, (47)

γ(G00 − Λ) +
σp
4

θF (2)θ − σp
2

(
p

2
θ2 − αp) +

σp
4

Ω00(θ) = 0, (48)

where

F (2) = p
2

2m2 =

∞∑
n=0

( ln p

2m2

)n 1

n!
2n =

∞∑
n=0

fn2
n. (49)

We have shown above that there is a field θ which satisfies the EoM
p

2

2m2 θ = p θ. This simplifies the above equations and we come to

γ(4Λ−R)− 2σpαp +
σp
4

Ω(θ) = 0, (50)

γ(G00 − Λ) +
σp
2

αp +
σp
4

Ω00(θ) = 0. (51)

Let us recall that, in the FLRW metric,

G00 = 3
( ȧ2
a2

+
k

a2

)
, R = 6

( ä
a
+

ȧ2

a2
+

k

a2

)
. (52)
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Computation (52) for the scale factors a+(t) = A+e
+mt and a−(t) =

A−e
−mt gives

G
(+)
00 = 3

(
m2 +

k

a2+

)
= 3

(
m2 +

k

A2
+

e−2mt
)
, (53)

G
(−)
00 = 3

(
m2 +

k

a2−

)
= 3

(
m2 +

k

A2
−

e+2mt
)
, (54)

R+ = 6
(
2m2 +

k

a2+

)
= 6

(
2m2 +

k

A2
+

e−2mt
)
, (55)

R− = 6
(
2m2 +

k

a2−

)
= 6

(
2m2 +

k

A2
−

e+2mt
)
. (56)

Direct calculation of Ω(θ) = gµν Ωµν(θ) and Ω00(θ), where (see (31))

Ωµν(θ) =

∞∑
n=1

fn

n−1∑
ℓ=0

[
gµν

(
∇α2ℓθ∇α2

n−1−ℓθ +2ℓϕ2n−ℓθ
)

− 2∇µ2
ℓθ∇ν2

n−1−ℓθ
]
, (57)

yields

Ω− = Ω(θ−) = 3p ln p θ2− = 3p ln p C2
− e−2mt, (58)

Ω+ = Ω(θ+) = 3p ln p θ2+ = 3p ln p C2
+ e+2mt, (59)

Ω
(−)
00 = Ω00(θ−) = −3

2
p ln p θ2− = −3

2
p ln p C2

− e−2mt, (60)

Ω
(+)
00 = Ω00(θ+) = −3

2
p ln p θ2+ = −3

2
p ln p C2

+ e+2mt. (61)

One can now easily verify that EoM (50) and (51) are satisfied as follows:

γ(4Λ−R±)− 2σpαp +
σp
4

Ω∓ = 0, (62)

γ(G
(±)
00 − Λ) +

σp
2

αp +
σp
4

Ω∓
00 = 0, (63)

with the conditions

6γm2 + σpαp − 2γΛ = 0, p ln p σp A2
±C

2
∓ − 8γk = 0, k = +1, (64)

or, in a more explicit form,

Λ = 3m2 +
4πG

g2
p2

p− 1
m4, (65)

1(
A±C∓

)2 =
2πG

g2
p3 ln p

p− 1
m4. (66)

Therefore, there is a solution of the corresponding equations of motion
only in the pair form

(
a±(t), θ∓(t)

)
.
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4. Discussion and conclusion

According to the Standard Model of Cosmology (also called ΛCDM model),
at the current cosmic time the universe consists approximately of 68 % of
dark energy, 27 % of dark matter and only 5 % of ordinary (visible) matter.
It is worth discussing now how this p-adic scalar particle (that we would like
to call p-adic scalaron) could be related to dark energy and dark matter.

A possible connection with dark energy. Equation (65) contains
the connection between the cosmological constant Λ, mass m of p-adic
scalaron and any prime number p. For a small mass m, as well as not a big
value of prime number p (it makes sense to take p = 3) and g2 ≥ 1, one
can neglect the second term on the RHS with respect to 3m2. As a result,
one obtains Λ ≈ 3m2, which is written in the natural units (ℏ = c = 1).
In the international system of units (SI), the previous relation should be
rewritten as

m ≈ ℏ
c2

√
Λ

3
. (67)

From (67), we can compute the approximate value of mass m, where

ℏ = 1.05×10−34m2kg/s, c = 3×108m/s and Λ = 3H2ΩΛ = 9.8×10−36 s−2.

We obtain that the mass of p-adic scalaron is

m ≈ 2.1× 10−69kg, (68)

which is about a 10−39 part of the mass of the electron (me = 9.1×10−31 kg).
Note that, in the above approximation (67), the mass of the p-adic

scalaron does not depend on p. However, if we take into consideration the
term that depends on p, and the mass of the p-adic scalaron is invariant,
then Λ explicitly depends on p. At very large values of p, the dependence
of Λ on p cannot be ignored. In fact, in this model, formula (65) expresses
the discrete spectrum of Λ, and thus the spectrum of the vacuum energy
density, as a function of the prime number p. If the Λ of our universe has
this discreteness, then it makes sense to assume that the energy density
of the vacuum decreased discretely during evolution from some enormous
value to very small in our time.

We should not forget that a p-adic scalaron is an effective description
of a scalar particle whose world line is parameterized by p-adic numbers. It
should also be noted that in the spirit of adelic description of strings, there
can exist a string whose world-sheet can be real and p-adic. In the context
of an adelic description, the p-adic scalaron can be considered as a special
state of an adelic scalar particle. See also discussion of p-adic matter in the
article [20].

Based on the above, it can be assumed that the vacuum is a mixture of
real and p-adic states of matter at very small distances close to the Planck
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length, and that the p-adic scalaron can be an important ingredient of the
cosmological constant Λ, and thus of dark energy according to the current
model of the universe.

A possible connection with dark matter. Since a p-adic scalaron
has an extremely small mass (68) and so the gravitational force, it is unlikely
to be detected in laboratory experiments. However, since it has an attrac-
tive self-interaction, the density of p-adic scalarons could be sufficiently
large at the galactic scale and could play a significant role as dark mat-
ter. In fact, p-adic scalarons have nonlinear and nonlocal self-interaction
that gives a solitonic form to the effective scalar field in the 4-dimensional
Minkowski space, i.e.,

φ(x) = p
2

(p−1) exp
( p− 1

2 p ln p
m2 x2

)
, x2 = −t2 +

3∑
i=1

(xi)2. (69)

Note that some dark matter effects at the cosmic scale can be obtained
as nonlocal modification of the Einstein gravity; see [22]. A role of non-
locality in cosmic dark energy, bouncing and cosmic acceleration is also
considered in the framework of string field theory; e.g., see [23, 24] and
references therein.

Connection with radius of a closed universe. Equality (66) tells
us that the product of A± of the closed universe under consideration and
amplitude C∓ of the p-adic scalaron field is a constant determined by the
p-adic scalaron’s mass m and a prime number p. One can take so small
C+ that A− is equal to the radius R of the corresponding closed universe.
Rewriting (66) and using the SI system, we have

A− = R = Pp

√
ℏ3
2πc

1

m2
√
G
, Pp =

g

C+

√
p− 1

p3 ln p
. (70)

Now, one can estimate radius the R = A− of the related closed universe
(where G = 6.67× 10−11m3kg−1s−2) , that is,

R = Pp

√
ℏ3
2πc

1

m2
√
G

≈ Pp × 1087m, (71)

which is a huge number, many times larger than the radius of our observable
universe.

Conclusion. The main results presented in this paper are:

� Construction of Lagrangian for p-adic matter field and investigation
of its equation of motion in weak field approximation.

� It is shown that a closed universe fulfilled by p-adic matter and a
cosmological constant has an exponential expansion.

� A connection between the cosmological constant, the mass of p-adic
scalar particle and prime numbers is obtained.
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� The mass of p-adic scalar particle is computed.

� A formula that connects the radius of the closed universe under con-
sideration with the mass of a p-adic scalar particle is obtained and the
corresponding radius is estimated.

� The corresponding notion of p-adic scalaron is proposed and its pos-
sible connection with dark energy and dark matter is conjectured.
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